

graceful - falcon REST done with grace

Contents:

	Graceful guide
	Resources

	Generic API resources

	Parameters

	Serializers and fields

	Content types

	Documenting your API

	API reference
	graceful package

	graceful.resources package

[image: Build Status] [https://travis-ci.org/swistakm/graceful] [image: Coverage Status] [https://coveralls.io/r/swistakm/graceful?branch=master] [image: Documentation Status] [http://graceful.readthedocs.io/en/latest/]

graceful

graceful is elegant Python REST toolkit built on top of
falcon [http://github.com/falconry/falcon]. It is highly inspired by
Django REST framework [http://www.django-rest-framework.org/] -
mostly by how object serialization is done but more emphasis here is put
on API to be self-descriptive.

Features:

	generic classes for list and single object resources

	simple but extendable pagination

	structured responses with content/meta separation

	declarative fields and parameters

	self-descriptive-everything: API description accessible both in
python and through OPTIONS requests

	painless validation

	100% tests coverage

	falcon>=0.3.0 (tested up to 1.0.x)

	python3 exclusive (tested from 3.3 to 3.5)

There is no community behind graceful yet but I hope we will build one
someday with your help. Anyway there is a mailing list on
Librelist [http://librelist.com]. Just send an email to
graceful@librelist.com and you’re subscribed.

python3 only

Important: graceful is python3 exclusive because right now
should be a good time to forget about python2. There are no plans for
making graceful python2 compatibile although it would be pretty
straightforward do do so with existing tools (like six).

usage

For extended tutorial and more information please refer to
guide [http://graceful.readthedocs.org/en/latest/guide/] included in
documentation.

Anyway here is simple example of working API made made with
graceful:

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (
 RetrieveAPI,
 PaginatedListAPI,
)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [
 {"id": 0, "name": "kitty", "breed": "saimese"},
 {"id": 1, "name": "lucie", "breed": "maine coon"},
 {"id": 2, "name": "molly", "breed": "sphynx"},
]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):
 id = IntField("cat identification number", read_only=True)
 name = RawField("cat name")
 breed = RawField("official breed name")

class Cat(RetrieveAPI):
 """
 Single cat identified by its id
 """
 serializer = CatSerializer()

 def get_cat(self, cat_id):
 try:
 return [
 cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)
][0]
 except IndexError:
 raise falcon.HTTPNotFound

 def retrieve(self, params, meta, **kwargs):
 cat_id = kwargs['cat_id']
 return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 serializer = CatSerializer()

 breed = StringParam("set this param to filter cats by breed")

 def list(self, params, meta, **kwargs):
 if 'breed' in params:
 filtered = [
 cat for cat in CATS_STORAGE
 if cat['breed'] == params['breed']
]
 return filtered
 else:
 return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it
with gunicorn [https://github.com/benoitc/gunicorn]:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome
httpie [http://httpie.org] tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
 "content": [
 {
 "breed": "saimese",
 "id": 0,
 "name": "kitty"
 }
],
 "meta": {
 "params": {
 "breed": "saimese",
 "indent": 0
 }
 }
}

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
 "details": "List of all cats in our API",
 "fields": {
 "breed": {
 "details": "official breed name",
 "label": null,
 "spec": null,
 "type": "string"
 },
 "id": {
 "details": "cat identification number",
 "label": null,
 "spec": null,
 "type": "int"
 },
 "name": {
 "details": "cat name",
 "label": null,
 "spec": null,
 "type": "string"
 }
 },
 "methods": [
 "GET",
 "OPTIONS"
],
 "name": "CatList",
 "params": {
 "breed": {
 "default": null,
 "details": "set this param to filter cats by breed",
 "label": null,
 "required": false,
 "spec": null,
 "type": "string"
 },
 "indent": {
 "default": "0",
 "details": "JSON output indentation. Set to 0 if output should not be formated.",
 "label": null,
 "required": false,
 "spec": null,
 "type": "integer"
 }
 },
 "path": "/v0/cats",
 "type": "list"
}

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There is only short set of rules that guide this project
development you should be aware of before submitting a pull request:

	Only requests that have passing CI builds (Travis) will be merged.

	Code is checked with flakes8 and pydocstyle during build so
this implicitely means that compliance with PEP-8 and PEP-257 are
mandatory.

	No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitely. Reviewing pull requests that suddenly
had their history rewritten just drives me crazy.

license

See LICENSE file.

Indices and tables

	Index

	Module Index

	Search Page

Graceful guide

	Resources

	Generic API resources
	RetrieveAPI

	RetrieveUpdateAPI

	RetrieveUpdateDeleteAPI

	ListAPI

	ListCreateAPI

	Paginated generic resources

	Generic resources without serialization

	Parameters
	Custom parameters

	Parameter validation

	Handling multiple occurences of parameters
	Order of values and ordered data

	Custom containers

	Serializers and fields
	Field arguments

	Field validation

	Resource validation

	Custom fields

	Content types

	Documenting your API
	Using self-descriptive resources

	Self-hosted documentation
	Serving HTML and using Jinja templates in falcon

	Populating templates with resources metadata

	Formatting resource class docstrings

Resources

Resources are main building blocks in falcon. This is also true with
graceful.

The most basic resource of all is a graceful.resources.base.BaseResource
and all other resource classes in in this package inherit from BaseResource.
It will not provide you with full set graceful features (like
object serialization, pagination, resource fields descriptions etc.)
but it is a good starting point if you want to build everything by yourself
but still need to have some consistent response structure and
self-descriptive parameters.

In most cases (simple GET-allowed resources) you need only to provide
your own http GET method handler like following:

from graceful.resources.base import BaseResource
from graceful.parameters import StringParam, IntParam

class SomeResource(BaseResource):
 # describe how HTTP query string parameters are handled
 some_param = StringParam("example string query string param")
 some_other_param = IntParam("example integer query string param")

 def on_get(self, req, resp):
 # retrieve dictionary of query string parameters parsed
 # and validated according to resource class description
 params = self.require_params(req)

 ## create your own response like always:
 # resp.body = "some content"

 ## or use following:
 # self.make_body(resp, params, {}, 'some content')

Note

Due to how falcon works there is always only single instance of a
resource class for a single registered route. Please remember to not keep
any state inside of this object (i.e. in self) between any steps of
response generation.

Generic API resources

graceful provides you with some set of generic resources in order to help you
describe how structured is data in your API. All of them expect that some
serializer instance is provided as a class level attribute. Serializer will
handle describing resource fields and also translation between
resource representation and internal object values that you use inside of
your application.

RetrieveAPI

RetrieveAPI represents single element serialized resource. In ‘content’
section of GET response it will return single object. On OPTIONSrequest
it will return additional field named ‘fields’ that describes all serializer
fields.

It expects from you to implement .retrieve(self, params, meta, **kwargs)
method handler that retrieves single object (e.g. from some storage) that will
be later serialized using provided serializer.

retrieve() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateAPI

RetrieveUpdateAPI extends RetrieveAPI with capability to
update objects with new data from resource representation provided in
PUT request body.

It expects from you to implement same handlers as for RetrieveAPI
and also new .update(self, params, meta, validated, **kwargs) method handler
that updates single object (e.g. in some storage). Updated object may or may
not be returned in response ‘content’ section (this is optional)

update() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	validated (dict): dictionary of internal object fields values
after converting from representation with full validation performed
accordingly to definition contained within serializer instance.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

If update will return any value it should have same form as return value
of retrieve() because it will be again translated into representation
with serializer.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

 def update(self, params, meta, foo_id, **kwargs):
 return db.Foo.update(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateDeleteAPI

RetrieveUpdateDeleteAPI extends RetrieveUpdateAPI with
capability to delete objects using DELETE requests.

It expects from you to implement same handlers as for RetrieveUpdateAPI
and also new .delete(self, params, meta, **kwargs) method handler
that deletes single object (e.g. in some storage).

delete() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

 def update(self, params, meta, foo_id, **kwargs):
 return db.Foo.update(id=foo_id)

 def delete(self, params, meta, **kwargs):
 db.Foo.delete(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

ListAPI

ListAPI represents list of resource instances. In ‘content’
section of GET response it will return list of serialized objects
representations. On OPTIONS request it will return additional
field named ‘fields’ that describes all serializer fields.

It expects from you to implement .list(self, params, meta, **kwargs)
method handler that retrieves list (or any iterable) of objects
(e.g. from some storage) that will be later serialized using provided
serializer.

list() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListAPIResource):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 return db.Foo.all(id=foo_id)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

ListCreateAPI

ListCreateAPI extends ListAPI with capability to
create new objects with data from resource representation provided in
POST request body.

It expects from you to implement same handlers as for ListAPI
and also new .create(self, params, meta, validated, **kwargs) method handler
that creates single object (e.g. in some storage). Created object may or may
not be returned in response ‘content’ section (this is optional)

create() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	validated (dict): dictionary of internal object fields values
after converting from representation with full validation performed
accordingly to definition contained within serializer instance.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

If create() will return any value it should have same form as return value
of retrieve() because it will be again translated into representation
with serializer.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListAPIResource):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 return db.Foo.all(id=foo_id)

 def create(self, params, meta, validated, **kwargs):
 return db.Foo.create(**validated)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

Paginated generic resources

PaginatedListAPI and PaginatedListCreateAPI are versions
of respecrively ListAPI and ListAPI classes that supply
with simple pagination build with following parameters:

	page_size: size of a single response page

	page: page count

They also will ‘meta’ section with following information on GET requests:

	page_size

	page

	next - url query string for next page (only if meta['is_more'] exists
and is True)

	prev - url query string for previous page (None if first page)

Paginated variations of generic list resource do not assume anything about
your resources so actual pagination must still be implemented inside of
list() handlers. Anyway this class allows you to manage params and meta
for pagination in consistent way across all of your resources if you only
decide to use it:

db = SomeDBInterface()
api = application = falcon.API()

class FooPaginatedResource(PaginatedListAPI):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 query = db.Foo.all(id=foo_id).offset(
 params['page'] * params['page_size']
).limit(
 params['page_size']
)

 # use meta['has_more'] to find out if there are
 # any pages behind this one
 if db.Foo.count() > (params['page'] + 1) * params['page_size']:
 meta['has_more'] = True

 return query

api.add_route('foo/', FooPaginatedtResource())

Note

If you don’t like anything about this opinionated meta section that
paginated generic resources provide, you can always override it with
own add_pagination_meta(params, meta) method handler.

Generic resources without serialization

If you don’t like how serializers work there are also two very basic generic
resources that does not rely on serializers: Resource and
ListResource. They can be extended with mixins found in
graceful.resources.mixins module and provide same method handlers like
generic resources that utilize serializers (list(), retrieve(),
update() etc.) but do not perform anything more beyond content-type level
serialization.

Parameters

Parameters provide a way to describe and evaluate all request query params
that can be used in your API resources.

New parameters are added to resources as class attributes:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
 filter_by_name = StringParam("Filter resource instances by their name")
 depth = IntParam("Set depth of search")

Class attribute names map directly to names expected in the query string. For
example the valid query strings in scope of preceding definition could be:

	filter_by_name=cats

	filter_by_name=dogs&depth=2

All param classes accept this set of arguments:

	details (str): verbose description of parameter. Should contain all
information that may be important to your API user and will be used for
describing resource on OPTIONS requests and .describe()
call.

	label (str): human readable label for this parameter (it will be used for
describing resource on OPTIONS requests).

Note that it is recomended to use parameter names that are self-explanatory
intead of relying on param labels.

	required (bool): if set to True then all GET, POST, PUT,
PATCH and DELETE requests will return 400 Bad Request response
if query param is not provided.

	default (str): set default value for param if it is not
provided in request as query parameter. This MUST be a raw string
value that will be then parsed by .value() handler.

If default is set and required is True it will raise
ValueError as having required parameters with default
value has no sense.

	param (str): set to True if multiple occurences of this parameter
can be included in query string, as a result values for this parameter will
be always included as a list in params dict. Defaults to False.

Note

If many==False and client inlcudes multiple values for this
parameter in query string then only one of those values will be
returned, and it is undefined which one.

For list of all available parameter classes please refer to
graceful.parameters module reference.

If you are using the bare falcon HTTP method handlers and sublcass directly
from graceful.resources.base.BaseResource then you can access all
deserialized query parameters as dictionary using require_params(req)
method:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
 filter_by_name = StringParam("Filter resource instances by their name")
 depth = IntParam("Set depth of search")

 def on_get(self, req, resp):
 params = self.require_params(req)

The self.require_params(req) will try to retrieve all of described query
parameters, validate them and populate with defaults if they were not found
in the query string. This method will also take care of raising the
falcon.errors.HTTPInvalidParam if:

	parameter specified as required=True was not provided

	parameter could not be parsed/validated (i.e. value() handler raised
ValueError)

Note that you do not need to handle this exception manually. It will be later
automatically transformed to 400 Bad Request by falcon if not catched
by try .. except clause.

If you are using generic resource classes from graceful.resources.generic
like ListAPI or RetrieveAPI the params retrieval step is done
automatically and you do not need to care. Parameters dict will be provided
in applicable retrieval/modification method handler (list(), update(),
retrieve etc.) and these methods will be executed only if call to
self.require_params(req) succeeded without raising any exceptions.

Custom parameters

Although graceful ships with some set of predefined parameter classes it is
very likely that you need something that is not yet covered because:

	it is not yet covered

	is very specific to your application

	it can be implemented in many ways and it is impossible to decide which is
best without being too opinionated.

New parameter types can be created by subclassing BaseParam and
and implementing .value(raw_value) method handler. ValueError raised
in this handler will eventually result in 400 Bad Request response.

Two additional class-level attributes help making more verbose parameter
description:

	type - string containig name of primitive data type like: “int”, “string”,
“float” etc. For most custom parameters this will be simply “string” and it
is used only for describtions so make sure it is something truely generic
or well described in your API documentation

	spec - two-tuple containing link name, and link url to any external
documentation that you may find helpful for developers.

Here is example of custom parameter that handles validation of alpha2 country
codes using pycountry module:

import pycountry

class LanguageParam(BaseParam):
 """
 This param normalizes language code passed to is and checks if it is valid
 """

 type = 'ISO 639-2 alpha2 language code'
 spec = (
 'ISO 639-2 alpha2 code list',
 "http://www.loc.gov/standards/iso639-2/php/code_list.php",
)

 def value(self, raw_value):
 try:
 # normalize code since we store then lowercase
 normalized = raw_value.lower()
 # first of all check if country so no query will be made if it is
 # invalid
 pycountry.languages.get(alpha2=normalized)

 return normalized

 except KeyError:
 raise ValueError(
 "'{code}' is not valid alpha2 language code"
 "".format(code=raw_value)
)

Parameter validation

Custom parameters are great for defining new data types that can be passed
through HTTP query string or handling very specific cases like country codes,
mime types, or even database filters. Still it may be sometimes an overkill
to define new parameter class to do something as simple as ensure min/max
bounds for numeric value or define as set of allowed choices.

All of basic parameters available in graceful accept validators keyword
argument that accepts a list of validation functions. These function will be
always called upon parameter retrieval. This functionality allows you to
quickly extend the semantic of your parameters without the need of subclassing.

A validator is any callable that accepts single positional argument
that will be a value returned from call to the value() handler of parameter
class. If validation funtion fails it is supposed to return
graceful.errors.ValidationError that will be later translated to
proper HTTP error response. Following is example of simple validation function
which ensures that parameter string is palindrome:

from graceful.resources.base import BaseResource
from graceful.parameters import StrParam
from graceful.errors import ValidationError

def is_palindrome(value):
 if value != value[::-1]:
 raise ValidationError("{} is not a palindrome")

class FamousPhrases(Resource):
 palindrome_query = StrParam(
 "Palindrome text query", validators=[is_palindrome]
)

Validators always work on deserialized values and this allows to easily reuse
the same code across different types of parameters and also between fields
(see: Field validation). Graceful takes advantage of this fact and already
provides you with a small set of fully reusable validators that can be used to
validate both your parameters and serialization fields. For more details see
graceful.validators module reference.

Handling multiple occurences of parameters

The simplest way to allow user to specify multiple occurences of single
parameter is to use many keyword argument. It is available for every
base parameter class initialization and it is good practice to not override
this argument in custom parameter classes using custom initialization.

If many is set to True for given parameter the resulting params
dictionary available in main method handlers of generic resources or through
self.require_params(req) method will contain list of values for given
resource instead of single value.

For instance, if you are building some text search API and expect client
to provide multiple search string in single query you can describe your
basic API as follows:

from graceful.parameters import StringParam
from graceful.resources.base import BaseResource

class SearchResource(BaseResource):
 search = StringParam("text search string", many=True)

With such definition your client can provide list of multiple values for the
search param using multiple instances of search=<value> in his query
string e.g:

search=matt&search=damon&search=affleck

Important: if many is set to False the value stored under
corresponding key will always represent the single parameter value. It is
important to note that providing multiple values for same parameter in the
query string by your API client is not considered an error even if parameter is
described as many=False. In that case only one value will be included in
parameters dictionary and it is not defined which one. When documenting your
API you need to take special care when informing which parameter supports
muliple value and which not. You should also make sure to inform API users
of possibility of undefined behaviour when not following your instructions.

Order of values and ordered data

Remember that multiple values coming from parameter defined using many=True
should be always considered independend from each other. This means that
order of resulting parameter values is always undefined.
If you need to handle parameters that represent specifically ordered list you
probably need custom parameter class that that will provide you with required
serialization. Such representation is generally independent from the many
argument of such custom parameter class.

The reason for that design decision is because when order of data is important
then usually the order by itself represents is a named quality or entity.

The best way to undestand this is by example. For instance let’s assume that
we are building some simple API that allows to search through some inventory
of clothes store. If we would like to allow clients to filter items by their
colors it completely makes sense to use following definition of query
parameter:

color = StringParam("One of main color items", many=True)

But if you are building some spatial search engine you might want to allow
user to search for data in region defined as a polygon. Polygon can be simply
represented by just an ordered list of points. But does it makes sense
to define your polygon as point parameter with many=True? Probably not.
In case where order of data is important you need some custom parameter class
that will explicitely define how to handle such parameters. The naive
implementation for polygon parameter could be as follows:
The naive

from graceful.parameters import BaseParam

class PolygonParam(BaseParam):
 """ Represents polygon parameter in string form of "x1,y1;x2,y2;..."
 """
 type = 'polygon'

 def value(self, raw_value):
 return [
 [float(x) for x in point.split(',')]
 for point in raw_value.split(';')
]

Such approach your will eventually make your code and API:

	Easier to understand - you will end up using parameter names that better
explain what you and your API users are dealing with.

	Easier to document - parameter class can be inspected for the purpose of
auto documentation. Their basic attributes (type and spec) are already
included in default OPTIONS handler.

	Easier to extend - if you suddenly realize that you need to support multiple
ordered sets of same type of data it is as simple as adding additional
many=True to declaration of parameter that represents some data container

Custom containers

With the many=True option multiple values for the same parameter will be
returned as list. But sometimes you may want to do additional processing when
many option is enables. For instance you may want to concatenate all
string searches to single string, make sure all values are unique or join
some ORM query sets using logical operator.

Of course it is completely valid approach to make such operation in your HTTP
method handler (in case of using BaseResource) or in your specific
retrieval/update handler (in case of using generic resource classes). This is
usually very simple:

from graceful.parameters import StringParam
from graceful.resources.generic import PaginatedListAPI

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 breed = StringParam(
 "set this param to filter cats by breed"
 many=True
)

 def list(self, params, meta, **kwargs):
 unique_breeds = set(param['breed']
 ...

Unfortunately, when you have a lot of different parameters that need
similar handling (e.g. various ORM-specific filter objects) this can become
tedious and lead to excessive code duplication. The easiest way overcome this
problem is to use custom container handler for multiple parameter occurences.
This can be done in your custom parameter class by overriding its default
container attribute.

The container handler can be both type object or a new method. It must accept
list of values as its single positional argument.

Following is an example StringParam re-implementation which additionally
makes sure that multiple occurences of the same parameter are all unique.
Uniqueness is simply achieved by using built-in set type as its
container attribute:

from graceful.parameters import BaseParam

class PolygonParam(BaseParam):
 """ Represents polygon parameter in string form of "x1,y1;x2,y2;..."
 """
 container = set

As already said, container handler can be a method too. This is very useful
for handling more complex use cases. For instance solrq [http://solrq.readthedocs.io/en/latest/]
is a nice utility for creating Apache Solr [http://lucene.apache.org/solr/]
search engine queries in Python. If your API somehow exposes Solr search it
would be nice to make parameter class that converts query string params
directly to solrq.Q objects. solrq allows also to easily join
multiple query objects using binary AND and OR operators in similar fashion
to Django’s queryset filters:

>>> Q(text='cat') | Q(text='dog')
<Q: text:cat OR text:dog>

It really makes sense to take advantage of such feature in your parameter
class that wraps GET params in solrq.Q instances whenever many=True
option is enabled. Following is example of custom parameter class that allows
to collapse multiple values of search queries to single solrq.Q instance
with predefined operator:

from graceful.params import StringParam

import operator
from functools import reduce

class FilterQueryParam(StringParam):
 """
 Param that represents Solr filter queries logically
 joined together depending on value of `op` argument
 """
 def __init__(
 self,
 details,
 solr_field,
 op=operator.and_,
 **kwargs
):
 if solr_field is None:
 raise ValueError("{} needs a `field` param cannot be None".format(
 self.__class__.__name__)
)

 self.solr_field = solr_field
 self.op = op

 super(FilterQueryParam, self).__init__(
 details, **kwargs
)

 def value(self, raw_value):
 return Q({self.solr_field: raw_value})

 def container(self, values):
 return reduce(self.op, values) if len(values) > 1 else values[0]

With such definition creating simple Solr-backed search API using graceful
and without extensive object serialization becomes pretty simple:

import operator

from solrq import Value as V
from pysolr import Solr
from graceful.resources.generic import ListAPI
from graceful.serializers import BaseSerializer

solr = Solr()

class VerbatimSerializer():
 """ Represents object as it is assuming that we deal with simple dicts
 """
 def to_representation(self, obj):
 return obj

class Search(ListAPI):
 serializer = VerbatimSerializer()

 text = FilterQueryParam(
 "Basix text search argumment (many values => AND)",
 many=True,
 solr_field='text'
 default=V('*', safe=True)
)

 category = StringParam(
 "set this param to filter cats by breed (many values => OR)"
 many=True,
 solr_field='category'
 default=V('*', safe=True),
 op=operator.or_,
)

 def list(self, params, meta, **kwargs):
 return list(solr.search(params['text'] & params['category']))

Serializers and fields

The purpose of serializers and fields is to describe how structured is data
that your API resources can return and accept. They together describe what
we could call a “resource representation”.

They also helps binding this resource representation with internal objects
that you use in your application no matter what you have there - dicts, native,
class instances, ORM objects, documents, whatever.
There is only one requirement: there must be a way to represent them as a set
of independent fields and their values. In other words: dictionaries.

Example of simple serializer:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
 species = RawField("non normalized cat species")
 age = IntField("cat age in years")
 height = FloatField("cat height in cm")

Serializers are intended to be used with generic resources provided by
graceful.resources.generic module so only handlers
for retrieving, updating,
creating etc. of objects from validated data is needed:

Functionally equivalent example using generic resources:

from graceful.resources.generic import RetrieveUpdateAPI
from graceful.serializers import BaseSerializer
from graceful.fields import RawField, FloatField

class Cat(object):
 def __init__(self, name, height):
 self.name = name
 self.height = height

class CatSerializer(BaseSerializer):
 name = RawField("name of a cat")
 height = FloatField("height in cm")

class CatResource(RetrieveUpdateAPI):
 serializer = CatSerializer()

 def retrieve(self, params, meta, **kwargs):
 return Cat('molly', 30)

 def update(self, params, meta, validated, **kwargs):
 return Cat(**validated)

Anyway serializers can be used outside of generic resources but some additional
work need to be done then:

import falcon

from graceful.resources.base import BaseResource

class CatResource(BaseResource):
 serializer = CatSerializer()

 def on_get(self, req, resp, **kwargs):
 # this in probably should be read from storage
 cat = Cat('molly', 30)

 self.make_body(
 req, resp,
 meta={},
 content=self.serializer.to_representation(cat),
)

 def on_put(self, req, resp, **kwargs)
 validated = self.require_validated(req)
 updated_cat = Cat(**validated)

 self.make_body(
 req, resp,
 meta={},
 # may be nothing or again representation of new cat
 content=self.serializer.to_representation(new_cat),
)

 req.status = falcon.HTTP_CREATED

Field arguments

All field classes accept this set of arguments:

	details (str, required): verbose description of field.

	label (str, optional): human readable label for this
field (it will be used for describing resource on OPTIONS requests).

Note that it is recomended to use field names that are self-explanatory
intead of relying on param labels.

	source (str, optional): name of internal object key/attribute
that will be passed to field’s on .to_representation(value) call.
Special '*' value is allowed that will pass whole object to
field when making representation. If not set then default source will
be a field name used as a serializer’s attribute.

	validators (list, optional): list of validator callables.

	many (bool, optional) set to True if field is in fact a list
of given type objects

Note

source='*' is in fact a dirty workaround and will not work well
on validation when new object instances needs to be created/updated
using POST/PUT requests. This works quite well with simple retrieve/list
type resources but in more sophisticated cases it is better to use
custom object properties as sources to encapsulate such fields.

Field validation

Additional validation of field value can be added to each field as a list of
callables. Any callable that accepts single argument can be a validator but
in order to provide correct HTTP responses each validator shoud raise
graceful.errors.ValidationError exception on validation call.

Note

Concept of validation for fields is understood here as a process of checking
if data of valid type (successfully parsed/processed by
.from_representation handler) does meet some other constraints
(lenght, bounds, unique, etc).

Example of simple validator usage:

from graceful.errors import ValidationError
from graceful.serializers import BaseSerializer
from graceful.fields import FloatField

def tiny_validator(value):
 if value > 20.0:
 raise ValidationError

class TinyCats(BaseSerializer):
 """ This resource accepts only cats that has height <= 20 cm """
 height = FloatField("cat height", validators=[tiny_validator])

graceful provides some small set of predefined validator helpers in
graceful.validators module.

Resource validation

In most cases field level validation is all that you need but sometimes you
need to perfom obejct level validation that needs to access multiple fields
that are already deserialized and validated. Suggested way to do this in
graceful is to override serializer’s .validate() method and raise
graceful.errors.ValidationError when your validation fails. This
exception will be then automatically translated to HTTP Bad Request response
on resource-level handlers. Here is example:

class DrinkSerializer():
 alcohol = StringField("main ingredient", required=True)
 mixed_with = StringField("what makes it tasty", required=True)

 def validate(self, object_dict, partial=False):
 # note: always make sure to call super `validate()`
 # so whole validation of fields works as expected
 super().validate(object_dict, partial)

 # here is a place for your own validation
 if (
 object_dict['alcohol'] == 'whisky' and
 object_dict['mixed_with'] == 'cola'
):
 raise ValidationError("bartender refused!')

Custom fields

Custom field types can be created by subclassing of BaseField class
and implementing of two method handlers:

	.from_representation(raw): returns internal data type from raw string
provided in request

	.to_representation(data): returns representation of internal data type

Example of custom field that assumes that data in internal object is stored
as a serialized JSON string that we would like to (de)serialize:

import json

from graceful.fields import BaseField

class JSONField(BaseField):
 def from_representation(raw):
 return json.dumps(raw)

 def to_representation(data):
 return json.loads(data)

Content types

graceful currently talks only JSON. If you want to support other
content-types then the only way is to override
BaseResource.make_body(),
BaseResource.require_representation() and optionally
BaseResource.on_options() etc. methods. Suggested way would be do
create a class mixin that can be added to every of your resources but ideally
it would be great if someone contributed code that adds reasonable content
negotiation and pluggable content-type serialization.

Documenting your API

Providing clear and readable documentation is very important topic for every
API creator. Graceful does not come with built-in autodoc feature yet, but
is built in a way that allows you to create your documentation very easily.

Every important building block that creates your API definition in graceful
(resource, parameter, and field classes) comes with special describe()
method that returns dictionary of all important metadata necessary to create
clear and readable documentation. Additionally generic API resources
(RetrieveAPI, ListAPI, ListCreateAPI and so on) are aware
of their associated serializers to ease the whole process of documenting your
service.

Using self-descriptive resources

The easiest way do access API metadata programatically is to issue
OPTIONS request to the API endpoint of choice. Example how to do that was
already presented in project’s README [https://github.com/swistakm/graceful]
file and main documentation page. Using this built-in
capability of graceful’s resources it should be definitely easy to populate your
HTML/JS based documentation portal with API metadata.

This is the preferred way to construct documentation portals for your API.
It has many advantages compared to documentation self-hosted within the same
application as your API service. Just to name a few:

	Documentation deployment is decoupled from deployment of your API service.
Documentation portal can be stored in completely different project and
does not even need to be hosted on the same machines as your API.

	Documentation portal may require completely different requirements that could
be in conflict with you.

	API are often secured on different layers and using different authentication
and authorization schemes. But documentations for such APIs are very often
left open. If you keep them both separated it will allow you to reduce
complexity of both projects.

	Changes to documentation layout and aesthetics do not require new deployments
of whole service. This makes your operations more robust.

The popular Swagger [http://swagger.io] project is built with similar idea in
mind. If you like this project and are already familiar with it you should be
able to easily translate API metadata returned by graceful to format that is
accepted by Swagger.

Self-hosted documentation

Decoupling documentation portal from your API service is in many cases the most
reliable option. Anyway, there are many use cases where such approach migth be
simply incovenient. For instance, if you distribute your project as a
downloadable package (e.g. through PyPI) you may want to make it easily
accessible for new users without the need of bootstrapping mutliple processes
and services.

In such cases it might be reasonable to generate documentation in format that
is convenient to the user by the same process that serves your API requests.
The same features that allow you to easily access API metadata via OPTIONS
requests allow you to introspect resources within your application process and
populate any kind of documents.

The most obvious approach is to create some HTML templates, fill them with
data retrieved from describe() method of each resource and serve them
directly to the user via HTTP.

Graceful can’t do all of that out of the box (maybe in future) but general
process is very simple and does not require a lot of code. Additionally, you
have full control over what tools you want to use to build documentation.

In this section we will show how it could be done using some popular tools like
Jinja [http://jinja.pocoo.org] and
python-hoedown [https://github.com/hhatto/python-hoedown] but no one forces
you to use specific template language or text markup. Choose anything you like
and anything you are comfortable with. All code that is featured in this guide
is also available in the demo [https://github.com/swistakm/graceful/tree/master/demo]
directory in the project repository.

Serving HTML and using Jinja templates in falcon

Graceful isn’t a full-flegded framework like Django or Flask. It is only
a toolkit that allows you to define REST APIs in a clean and convenient way.
Only that and nothing more.

Neither Graceful nor Falcon have built-in support for generating HTML responses
because it is not their main use case. But serving HTML isn’t by any means
different from responding with JSON, XML, YAML, or any other content type.
What you need to do is to put your HTML to the body section of your response
and set proper value of the Content-Type header. Here is simple example
of falcon resource that serves some html:

import falcon

class HtmlResource:
 def on_get(self, req, resp):
 resp.body = """
 <!DOCTYPE html>
 <html>
 <head><title>Hello World!</title></head>
 <body>
 <h1>Hello World!</h1>
 </body>
 </html>
 """
 resp.status = falcon.HTTP_200
 resp.content_type = 'text/html'

Of cource no one wants to generate documentation relying solely on
str.format(). One useful feature that many web frameworks offer is some
kind of templating engine that allows you to easily format different kinds of
documents. If you want to build beautiful documentation you will eventually
need a one. For the purpose of this example we will use Jinja that is usually
a very good choice and is very easy to start with.

In our documentation pages, we don’t want to support any query string
parameters or define CRUD semenatics. So we don’t need any of Graceful’s
generic classes, parameters of serializers. Let’s build simple falcon resource
that will allow us to respond with templated HTML response that may be
populated with some predefined (or dynamic) context:

from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

class Templated(object):
 template_name = None

 def __init__(self, template_name=None, context=None):
 # note: this is to ensure that template_name can be set as
 # class level attribute in derrived class
 self.template_name = template_name or self.template_name
 self.context = context or {}

 def render(self, req, resp):
 template = env.get_template(self.template_name)
 return template.render(**self.context)

 def on_get(self, req, resp):
 resp.body = self.render(req, resp)
 resp.content_type = 'text/html'

Assuming we have index.html Jinja template stored in the templates
directory we can start to serve your first HTML from falcon by adding
Templated resource instance to your app router:

api.add_route("/", Templated('index.html'))

Populating templates with resources metadata

Once you are able to generate HTML pages from template it’s time to populate
them with resource metadata. Every resource class instance in Graceful provides
describe() method that returns dictionary that contains metadata with
information about it’s resource structure (fields), accepted HTTP methods,
query string parameters, and so on. The general structure is as follows:

{
 "details": ... # => Resource class docstring
 "fields": { # => Description of resource representation fields
 "<field_name>": {
 "details": ..., # => Field definition 'details' string
 "label": ..., # => Field definition 'label' string
 "spec": ..., # => Additional specification tuple associated
 # with specific field class. It is usualy
 # standard name (e.g. ISO 639-2), and URL to its
 # official documentation
 "type": ..., # => Generic type name like 'string', 'bool', etc.
 },
 ...
 },
 "methods": [...], # => List of accepted HTTP methods (uppercase)
 "name": "CatList", # => Resource class name
 "params": { # => Description of accepted query string params
 "<param_name>": {
 "default": ..., # => Default parameter value
 "details": ..., # => Param definition 'details' string
 "label": ...,
 "required": ..., # => Flag indicating if parameter is requires (bool)
 "spec": ..., # => Additional specification tuple associated
 # with specific param class. It is usualy
 # standard name (e.g. ISO 639-2), and URL to its
 # official documentation
 "type": "..." # => Generic type name like 'string', 'bool', etc.
 },
 },
 "path": ..., # => URI leading to resource (only available
 # on OPTIONS requests)
 "type": ..., # => General type of resource representation form.
 # It may be "object" for single resource
 # representation or "list" for endpoints that
 # return list of resource representations.
}

Knowing that resource descriptions have well defined and consistent structure
we can add them to predefined context of our Templated resource. Because
all API resources are always associated with their URIs (which are unique
per resource class), it is a good approach to group descriptions by their
URI templates from falcon router.

Let’s assume we want to document Cats API example presented in
main documentation page. Here is falcon’s router
configuration that adds Cats API resources and additional templated
documentation resource that can render our service metadata in human readable
form:

api.add_route("/v1/cats/{cat_id}", V1.Cat())
api.add_route("/v1/cats/", V1.CatList())
api.add_route("/", Templated('index.html', {
 'endpoints': {
 "/v1/cats/": V1.CatList().describe(),
 "/v1/cats/{cat_id}": V1.Cat().describe(),
 }
}))

For APIs that contain a lot of multiple resources it is always better to follow
“don’t repeat yourself” principle:

api = application = falcon.API()

endpoints = {
 "/v1/cats/{cat_id}": V1.Cat(),
 "/v1/cats/": V1.CatList(),
}

for uri, endpoint in endpoints:
 api.add_route(uri, endpoints)

api.add_route("/", Templated('index.html', {
 'endpoints': {
 uri: endpoint.describe()
 for uri, endpoint
 in endpoints.items()
 }
}))

The last thing you need to do is to create a template that will be used to
render your documentation. Here is a minimal Jinja template for Cats API that
provides general overview on the API structure with plain HTML and without any
fancy styling:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Cats API</title>
</head>
<body>

<h1>Cats API documentation</h1>

<p> Welcome to Cats API documentation </p>

{% for uri, endpoint in endpoints.items() %}
 <h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

 <p>
 Accepted methods:
 <code>{{ endpoint.methods }}</code>
 </p>

 <p> {{ endpoint.details }}</p>

 <h3>Accepted params</h3>
 {% if endpoint.params %}

 {% for name, param in endpoint.params.items() %}
 {{ name }} ({{ param.type }}): {{ param.details }}
 {% endfor %}

 {% endif %}

 <h3>Accepted fields</h3>
 {% if endpoint.fields %}

 {% for name, field in endpoint.fields.items() %}
 {{ name }} ({{ field.type }}): {{ field.details }}
 {% endfor %}

 {% endif %}
{% endfor %}
</body>
</html>

Formatting resource class docstrings

Building good service documentation is not an easy task but Graceful tries to
make it at least a bit easier by providing you with some tools to introspect
your service. Thanks to this you can take resource metadata and convert it to
human readable form.

But your work does not end on providing the list of acceptable fields and
parameters. Very often you may need to provide some more information about
specific resource type like specific limits, usage example or rationale behind
your design decisions. The best place to do that is the resource docstring
that is always included in the result of describe() method call. This is
very convenient way of managing even large parts of your documentation.

But when docstrings get longer and longer it is good idea to add a bit more
structure to them instead of keeping them unformatted. A good idea is to use
some lightweight markup language that is easy-to-read in plain text (so it is
easy to edit by developer) but provides you with enough rendering capabilities
to make your documentation look good for actual API user. A very popular choice
for a lightweight markup is Markdown [https://en.wikipedia.org/wiki/Markdown].

It seems that everyone loves Markdown, but apparently there is no Markdown
parser (at least availaible in Python) that would not suck terribly in some of
its aspects. Anyway, Python binding to
hoedown [https://github.com/hoedown/hoedown] (that is fork of sundown, that
is fork of upskirt, that is now a libsoldout...) has acceptable quality and can
be successfully used for that purpose.

The best news is that it is insanely easy to integrate it with Jinja. The only
thing you need to do is to create new template filter that will allow you to
convert any string to HTML inside of you template. It could be something like
following:

import hoedown
from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

md = hoedown.Markdown(
 CustomRenderer(),
 extensions=hoedown.EXT_FENCED_CODE | hoedown.EXT_HIGHLIGHT
)

def markdown_filter(data):
 return md.render(data)

env.filters['markdown'] = markdown_filter

With such definition you can use your new filter anywhere in template
where you expect string to be multiline Markdown markup:

{% for uri, endpoint in endpoints.items() %}
 <h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

 <p> {{ endpoint.details|markdown }}</p>
{% endfor %}

You can also use that technique to format multiline strings supplied
as details arguments to fields and parameters definitions. Graceful
will properly strip excesive leading whitespaces from them so you can
easily use any indentation-sensitive markup language (like reStructuredText).

API reference

	graceful package
	graceful.fields module

	graceful.parameters module

	graceful.serializers module

	graceful.validators module

	graceful.errors module

	graceful.resources package
	graceful.resources.base module

	graceful.resources.generic module

	graceful.resources.mixins module

graceful package

graceful.fields module

	
class graceful.fields.BaseField(details, label=None, source=None, validators=None, many=False, read_only=False)

	Bases: object

Base field class for subclassing.

To create new field type subclass BaseField and implement following
methods:

	from_representation(): converts representation (used in
request/response body) to internal value.

	to_representation(): converts internal value to representation
that will be used in response body.

	Parameters:	
	details (str) – human readable description of field (it will be used
for describing resource on OPTIONS requests).

	label (str) – human readable label of a field (it will be used for
describing resource on OPTIONS requests).

Note: it is recommended to use field names that are
self-explanatory intead of relying on field labels.

	source (str) – name of internal object key/attribute that will be
passed to field on .to_representation() call. Special '*'
value is allowed that will pass whole object to field when making
representation. If not set then default source will
be a field name used as a serializer’s attribute.

	validators (list) – list of validator callables.

	many (bool) – set to True if field is in fact a list of given type
objects

	read_only (bool) – True if field is read only and cannot be set/modified
by POST and PUT requests

Example:

class BoolField(BaseField):
 def from_representation(self, data):
 if data in {'true', 'True', 'yes', '1', 'Y'}:
 return True:
 elif data in {'false', 'False', 'no', '0', 'N'}:
 return False:
 else:
 raise ValueError(
 "{data} is not valid boolean field".format(
 data=data
)
)

 def to_representation(self, value):
 return ["True", "False"][value]

	
describe(**kwargs)

	Describe this field instance for purpose of self-documentation.

	Parameters:	kwargs (dict) – dictionary of additional description items for
extending default description

	Returns:	dict – dictionary of description items

Suggested way for overriding description fields or extending it with
additional items is calling super class method with new/overriden
fields passed as keyword arguments like following:

class DummyField(BaseField):
 def description(self, **kwargs):
 super().describe(is_dummy=True, **kwargs)

	
from_representation(data)

	Convert representation value to internal value.

Note

This is method handler stub and should be redifined in the
BaseField subclasses.

	
spec = None

	

	
to_representation(value)

	Convert representation value to internal value.

Note

This is method handler stub and should be redifined in the
BaseField subclasses.

	
type = None

	

	
validate(value)

	Perform validation on value by running all field validators.

Single validator is a callable that accepts one positional argument
and raises “ValidationError” when validation fails.

Error message included in exception will be included in http error
response

	Parameters:	value – internal value to validate

	Returns:	None

Note

Concept of validation for fields is understood here as a process
of checking if data of valid type (successfully parsed/processed by
.from_representation handler) does meet some other constraints
(lenght, bounds, uniqueness, etc). So this method is always called
with result of .from_representation() passed as its argument.

	
class graceful.fields.BoolField(details, representations=None, **kwargs)

	Bases: graceful.fields.BaseField

Represents boolean type of field.

By default accepts a wide range of incoming True/False representations:

	False: ['False', 'false', 'FALSE', 'F', 'f', '0', 0, 0.0, False]

	True: ['True', 'true', 'TRUE', 'T', 't', '1', 1, True]

By default, the outup representations of internal object’s value are
Python’s False/True values that will be later serialized to form that
is native for content-type of use.

This behavior can be changed using representations field argument.
Note that when using representations parameter you need to make
strict decision and there is no ability to accept multiple options for
true/false representations. Anyway, it is reccomended approach to
strictly define these values.

	Parameters:	representations (tuple) – two-tuple with representations for
(False, True) values, that will be used instead of default values

	
from_representation(data)

	Convert representation value to bool if it has expected form.

	
to_representation(value)

	Convert internal boolean value to one of defined representations.

	
type = 'bool'

	

	
class graceful.fields.FloatField(details, max_value=None, min_value=None, **kwargs)

	Bases: graceful.fields.BaseField

Represents float type of field.

Accepts both floats and strings as an incoming float number
representation and always returns float as a representation of internal
objects’s value that will be later serialized to form that is native for
content-type of use.

This field accepts optional arguments that simply add new max and min
value validation.

	Parameters:	
	max_value (int) – optional max value for validation

	min_value (int) – optional min value for validation

	
from_representation(data)

	Convert representation value to float.

	
to_representation(value)

	Convert internal value to float.

	
type = 'float'

	

	
class graceful.fields.IntField(details, max_value=None, min_value=None, **kwargs)

	Bases: graceful.fields.BaseField

Represents integer type of field.

Field of this type accepts both integers and strings as an incoming
integer representation and always returns int as a representation of
internal objects’s value that will be later serialized to form that is
native for content-type of use.

This field accepts optional arguments that simply add new max and min
value validation.

	Parameters:	
	max_value (int) – optional max value for validation

	min_value (int) – optional min value for validation

	
from_representation(data)

	Convert representation value to int.

	
to_representation(value)

	Convert internal value to int.

	
type = 'int'

	

	
class graceful.fields.RawField(details, label=None, source=None, validators=None, many=False, read_only=False)

	Bases: graceful.fields.BaseField

Represents raw field subtype.

Any value from resource object will be returned as is without any
conversion and no control over serialized value type is provided. Can be
used only with very simple data types like int, float, str etc. but can
eventually cause problems if value provided in representation has type
that is not accepted in application.

Effect of using this can differ between various content-types.

	
from_representation(data)

	Return representation value as-is (note: content-type dependent).

	
to_representation(value)

	Return internal value as-is (note: content-type dependent).

	
type = 'raw'

	

	
class graceful.fields.StringField(details, label=None, source=None, validators=None, many=False, read_only=False)

	Bases: graceful.fields.BaseField

Represents string field subtype without any extensive validation.

	
from_representation(data)

	Convert representation value to str.

	
to_representation(value)

	Convert representation value to str.

	
type = 'string'

	

graceful.parameters module

	
class graceful.parameters.Base64EncodedParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes string parameter with value encoded using Base64 encoding.

	
spec = ('RFC-4648 Section 4', 'https://tools.ietf.org/html/rfc4648#section-4')

	

	
value(raw_value)

	Decode param with Base64.

	
class graceful.parameters.BaseParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: object

Base parameter class for subclassing.

To create new parameter type subclass BaseParam and implement
.value() method handler.

	Parameters:	
	details (str) – verbose description of parameter. Should contain all
information that may be important to your API user and will be used
for describing resource on OPTIONS requests and .describe()
call.

	label (str) – human readable label for this parameter (it will be used
for describing resource on OPTIONS requests).

Note that it is recomended to use parameter names that are
self-explanatory intead of relying on param labels.

	required (bool) – if set to True then all GET, POST, PUT,
PATCH and DELETE requests will return 400 Bad Request response
if query param is not provided. Defaults to False.

	default (str) – set default value for param if it is not
provided in request as query parameter. This MUST be a raw string
value that will be then parsed by .value() handler.

If default is set and required is True it will raise
ValueError as having required parameters with default
value has no sense.

	many (str) –
	set to True if multiple occurences of this parameter

	can be included in query string, as a result values for this
parameter will be always included as a list in params dict.
Defaults to False.

Note

If many=False and client inlcudes multiple values for this
parameter in query string then only one of those values will be
returned, and it is undefined which one.

Example:

class BoolParam(BaseParam):
 def value(self, data):
 if data in {'true', 'True', 'yes', '1', 'Y'}:
 return True
 elif data in {'false', 'False', 'no', '0', 'N'}:
 return False
 else:
 raise ValueError(
 "{data} is not valid boolean field".format(
 data=data
)
)

	
container

	alias of list

	
describe(**kwargs)

	Describe this parameter instance for purpose of self-documentation.

	Parameters:	kwargs (dict) – dictionary of additional description items for
extending default description

	Returns:	dict – dictionary of description items

Suggested way for overriding description fields or extending it with
additional items is calling super class method with new/overriden
fields passed as keyword arguments like following:

class DummyParam(BaseParam):
 def description(self, **kwargs):
 super().describe(is_dummy=True, **kwargs)

	
spec = None

	

	
type = None

	

	
validated_value(raw_value)

	Return parsed parameter value and run validation handlers.

Error message included in exception will be included in http error
response

	Parameters:	value – raw parameter value to parse validate

	Returns:	None

Note

Concept of validation for params is understood here as a process
of checking if data of valid type (successfully parsed/processed by
.value() handler) does meet some other constraints
(lenght, bounds, uniqueness, etc.). It will internally call its
value() handler.

	
value(raw_value)

	Raw value deserialization method handler.

	Parameters:	raw_value (str) – raw value from GET parameters

	
class graceful.parameters.BoolParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes parameter with value expressed as bool.

Accepted string values for boolean parameters are as follows:

	False: ['True', 'true', 'TRUE', 'T', 't', '1'}

	True: ['False', 'false', 'FALSE', 'F', 'f', '0', '0.0']

In case raw parameter value does not match any of these strings the
value() method will raise ValueError method.

	
type = 'bool'

	

	
value(raw_value)

	Decode param as bool value.

	
class graceful.parameters.DecimalParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes parameter with value expressed as decimal number.

	
type = 'decimal'

	

	
value(raw_value)

	Decode param as decimal value.

	
class graceful.parameters.FloatParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes parameter with value expressed as float number.

	
type = 'float'

	

	
value(raw_value)

	Decode param as float value.

	
class graceful.parameters.IntParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes parameter with value expressed as integer number.

	
type = 'integer'

	

	
value(raw_value)

	Decode param as integer value.

	
class graceful.parameters.StringParam(details, label=None, required=False, default=None, many=False, validators=None)

	Bases: graceful.parameters.BaseParam

Describes parameter that will always be returned as-is (string).

Additional validation can be added to param instance using validators
argument during initialization:

from graceful.parameters import StringParam
from graceful.validators import match_validator
from graceful.resources.generic import Resource

class ExampleResource(Resource):
 word = StringParam(
 'one "word" parameter',
 validators=[match_validator('\w+')],
)

	
type = 'string'

	

	
value(raw_value)

	Return param value as-is (str).

graceful.serializers module

	
class graceful.serializers.BaseSerializer

	Bases: object

Base serializer class for describing internal object serialization.

Example:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
 species = RawField("non normalized cat species")
 age = IntField("cat age in years")
 height = FloatField("cat height in cm")

	
describe()

	Describe all serialized fields.

It returns dictionary of all fields description defined for this
serializer using their own describe() methods with respect to order
in which they are defined as class attributes.

	Returns:	OrderedDict – serializer description

	
fields

	Return dictionary of field definition objects of this serializer.

	
from_representation(representation)

	Convert given representation dict into internal object.

Internal object is simply a dictionary of values with respect to field
sources.

This does not check if all required fields exist or values are
valid in terms of value validation
(see: BaseField.validate()) but still requires all of passed
representation values to be well formed representation (success call
to field.from_representation).

In case of malformed representation it will run additional validation
only to provide a full detailed exception about all that might be
wrong with provided representation.

	Parameters:	representation (dict) – dictionary with field representation values

	Raises:	DeserializationError – when at least one representation field
is not formed as expected by field object. Information
about additional forbidden/missing/invalid fields is provided
as well.

	
get_attribute(obj, attr)

	Get attribute of given object instance.

Reason for existence of this method is the fact that ‘attribute’ can
be also object’s key from if is a dict or any other kind of mapping.

Note: it will return None if attribute key does not exist

	Parameters:	obj (object) – internal object to retrieve data from

	Returns:	internal object’s key value or attribute

	
set_attribute(obj, attr, value)

	Set value of attribute in given object instance.

Reason for existence of this method is the fact that ‘attribute’ can
be also a object’s key if it is a dict or any other kind of mapping.

	Parameters:	
	obj (object) – object instance to modify

	attr (str) – attribute (or key) to change

	value – value to set

	
to_representation(obj)

	Convert given internal object instance into representation dict.

Representation dict may be later serialized to the content-type
of choice in the resource HTTP method handler.

This loops over all fields and retrieves source keys/attributes as
field values with respect to optional field sources and converts each
one using field.to_representation() method.

	Parameters:	obj (object) – internal object that needs to be represented

	Returns:	dict – representation dictionary

	
validate(object_dict, partial=False)

	Validate given internal object returned by to_representation().

Internal object is validated against missing/forbidden/invalid fields
values using fields definitions defined in serializer.

	Parameters:	
	object_dict (dict) – internal object dictionart to perform
to validate

	partial (bool) – if set to True then incomplete object_dict
is accepter and will not raise any exceptions when one
of fields is missing

	Raises:	DeserializationError

	
class graceful.serializers.MetaSerializer

	Bases: type

Metaclass for handling serialization with field objects.

	
static __new__(mcs, name, bases, namespace)

	Create new class object instance and alter its namespace.

	
classmethod __prepare__(mcs, name, bases, **kwargs)

	Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict so _get_fields() method can
construct fields storage that preserves the same order of fields as
defined in code.

Note: this is python3 thing and support for ordering of params in
descriptions will not be backported to python2 even if this framework
will get python2 support.

graceful.validators module

	
graceful.validators.min_validator(min_value)

	Return validator function that ensures lower bound of a number.

Result validation function will validate the internal value of resource
instance field with the value >= min_value check

	Parameters:	min_value – minimal value for new validator

	
graceful.validators.max_validator(max_value)

	Return validator function that ensures upper bound of a number.

Result validation function will validate the internal value of resource
instance field with the value >= min_value check.

	Parameters:	max_value – maximum value for new validator

	
graceful.validators.choices_validator(choices)

	Return validator function that will check if value in choices.

	Parameters:	max_value (list, set, tuple) – allowed choices for new validator

	
graceful.validators.match_validator(expression)

	Return validator function that will check if matches given expression.

	Parameters:	match – if string then this will be converted to regular expression
using re.compile. Can be also any object that has match()
method like already compiled regular regular expression or custom
matching object/class.

graceful.errors module

	
exception graceful.errors.DeserializationError(missing=None, forbidden=None, invalid=None, failed=None)

	Bases: ValueError

Raised when error happened during deserialization of representation.

	
as_bad_request()

	Translate this error to falcon’s HTTP specific error exception.

	
exception graceful.errors.ValidationError

	Bases: ValueError

Raised when validation error occured.

	
as_bad_request()

	Translate this error to falcon’s HTTP specific error exception.

Note

Exceptions returned by this method should be used to inform about
resource validation failures. In case of param validation
failures the as_invalid_param() method should be used.

	
as_invalid_param(param_name)

	Translate this error to falcon’s HTTP specific error exception.

Note

Exceptions returned by this method should be used to inform about
param validation failures. In case of resource validation
failures the as_bad_request() method should be used.

	Parameters:	param_name (str) – HTTP query string parameter name

graceful.resources package

graceful.resources.base module

	
class graceful.resources.base.BaseResource

	Bases: object

Base resouce class with core param and response functionality.

This base class handles resource responses, parameter deserialization,
and validation of request included representations if serializer is
defined.

	
allowed_methods()

	Return list of allowed HTTP methods on this resource.

This is only for purpose of making resource description.

	Returns:	list – list of allowed HTTP method names (uppercase)

	
describe(req=None, resp=None, **kwargs)

	Describe API resource using resource introspection.

Additional description on derrived resource class can be added using
keyword arguments and calling super().decribe() method call
like following:

class SomeResource(BaseResource):
 def describe(req, resp, **kwargs):
 return super().describe(
 req, resp, type='list', **kwargs
)

	Parameters:	
	req (falcon.Request) – request object

	resp (falcon.Response) – response object

	kwargs (dict) – dictionary of values created from resource url
template

	Returns:	dict – dictionary with resource descritpion information

	
make_body(resp, params, meta, content)

	Construct response body in resp object using JSON serialization.

	Parameters:	
	resp (falcon.Response) – response object where to include
serialized body

	params (dict) – dictionary of parsed parameters

	meta (dict) – dictionary of metadata to be included in ‘meta’
section of response

	content (dict) – dictionary of response content (resource
representation) to be included in ‘content’ section of response

	Returns:	None

	
on_options(req, resp, **kwargs)

	Respond with JSON formatted resource description on OPTIONS request.

	Parameters:	
	req (falcon.Request) – Optional request object. Defaults to None.

	resp (falcon.Response) – Optional response object. Defaults to None.

	kwargs (dict) – Dictionary of values created by falcon from
resource uri template.

	Returns:	None

	
params

	Return dictionary of parameter definition objects.

	
require_meta_and_content(content_handler, params, **kwargs)

	Require ‘meta’ and ‘content’ dictionaries using proper hander.

	Parameters:	
	content_handler (callable) – function that accepts
params, meta, **kwargs argument and returns dictionary
for content response section

	params (dict) – dictionary of parsed resource parameters

	kwargs (dict) – dictionary of values created from resource url
template

	Returns:	tuple (meta, content) –

	two-tuple with dictionaries of meta and

	content response sections

	
require_params(req)

	Require all defined parameters from request query string.

Raises falcon.errors.HTTPMissingParam exception if any of required
parameters is missing and falcon.errors.HTTPInvalidParam if any
of parameters could not be understood (wrong format).

	Parameters:	req (falcon.Request) – request object

	
require_representation(req)

	Require raw representation dictionary from falcon request object.

This does not perform any field parsing or validation but only uses
allowed content-encoding handler to decode content body.

Note

Currently only JSON is allowed as content type.

	Parameters:	req (falcon.Request) – request object

	Returns:	dict – raw dictionary of representation supplied in request body

	
require_validated(req, partial=False)

	Require fully validated internal object dictionary.

Internal object dictionary creation is based on content-decoded
representation retrieved from request body. Internal object validation
is performed using resource serializer.

	Parameters:	
	req (falcon.Request) – request object

	partial (bool) – self to True if partially complete representation
is accepted (e.g. for patching instead of full update). Missing
fields in representation will be skiped.

	Returns:	dict –

	dictionary of fields and values representing internal object.

	Each value is a result of field.from_representation call.

	
serializer = None

	

	
class graceful.resources.base.MetaResource

	Bases: type

Metaclass for handling parametrization with parameter objects.

	
static __new__(mcs, name, bases, namespace)

	Create new class object instance and alter its namespace.

	
classmethod __prepare__(mcs, name, bases, **kwargs)

	Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict so _get_params() method can
construct params storage that preserves the same order of parameters
as defined in code.

Note: this is python3 thing and support for ordering of params in
descriptions will not be backported to python2 even if this framework
will get python2 support.

	Parameters:	
	bases – all base classes of created resource class

	namespace (dict) – namespace as dictionary of attributes

graceful.resources.generic module

	
class graceful.resources.generic.ListAPI

	Bases: graceful.resources.mixins.ListMixin, graceful.resources.base.BaseResource

Generic List API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	
describe(req=None, resp=None, **kwargs)

	Extend default endpoint description with serializer description.

	
on_get(req, resp, **kwargs)

	Respond on GET requests using self.list() handler.

	
class graceful.resources.generic.ListCreateAPI

	Bases: graceful.resources.mixins.CreateMixin, graceful.resources.generic.ListAPI

Generic List/Create API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	POST: create new resource from representation provided in request body
(handled with .create() method handler)

	
on_post(req, resp, **kwargs)

	Respond on POST requests using self.create() handler.

	
class graceful.resources.generic.ListResource

	Bases: graceful.resources.mixins.ListMixin, graceful.resources.base.BaseResource

Basic retrieval of resource instance lists without serialization.

This resource class is intended for endpoints that do not require automatic
representation serialization and extensive field descriptions but still
gives support for defining parameters as resource class attributes.

Example usage:

	
class graceful.resources.generic.PaginatedListAPI

	Bases: graceful.resources.mixins.PaginatedMixin, graceful.resources.generic.ListAPI

Generic List API with resource serialization and pagination.

Generic resource that uses serializer for resource description,
serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	
class graceful.resources.generic.PaginatedListCreateAPI

	Bases: graceful.resources.mixins.PaginatedMixin, graceful.resources.generic.ListCreateAPI

Generic List/Create API with resource serialization and pagination.

Generic resource that uses serializer for resource description,
serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	POST: create new resource from representation provided in request body
(handled with .create() method handler)

	
class graceful.resources.generic.Resource

	Bases: graceful.resources.mixins.RetrieveMixin, graceful.resources.base.BaseResource

Basic retrieval of resource instance lists without serialization.

This resource class is intended for endpoints that do not require automatic
representation serialization and extensive field descriptions but still
gives support for defining parameters as resource class attributes.

Example usage:

	
class graceful.resources.generic.RetrieveAPI

	Bases: graceful.resources.mixins.RetrieveMixin, graceful.resources.base.BaseResource

Generic Retrieve API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation (handled with .retrieve()
method handler)

	
describe(req=None, resp=None, **kwargs)

	Extend default endpoint description with serializer description.

	
on_get(req, resp, **kwargs)

	Respond on GET requests using self.retrieve() handler.

	
serializer = None

	

	
class graceful.resources.generic.RetrieveUpdateAPI

	Bases: graceful.resources.mixins.UpdateMixin, graceful.resources.generic.RetrieveAPI

Generic Retrieve/Update API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation handled with .retrieve()
method handler

	PUT: update resource with representation provided in request body
(handled with .update() method handler)

	
on_put(req, resp, **kwargs)

	Respond on PUT requests using self.update() handler.

	
class graceful.resources.generic.RetrieveUpdateDeleteAPI

	Bases: graceful.resources.mixins.DeleteMixin, graceful.resources.generic.RetrieveUpdateAPI

Generic Retrieve/Update/Delete API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation (handled with .retrieve()
method handler)

	PUT: update resource with representation provided in request body
(handled with .update() method handler)

	DELETE: delete resource (handled with .delete() method handler)

graceful.resources.mixins module

	
class graceful.resources.mixins.BaseMixin

	Bases: object

Base mixin class.

	
handle(handler, req, resp, **kwargs)

	Handle given resource manipulation flow in consistent manner.

This mixin is intended to be used only as a base class in new flow
mixin classes. It ensures that regardless of resource manunipulation
semantics (retrieve, get, delete etc.) the flow is always the same:

	Decode and validate all request parameters from the query string
using self.require_params() method.

	Use self.require_meta_and_content() method to construct meta
and content dictionaries that will be later used to create
serialized response body.

	Construct serialized response body using self.body() method.

	Parameters:	
	handler (method) – resource manipulation method handler.

	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified.

	**kwargs – additional keyword arguments retrieved from url
template.

	Returns:	Content dictionary (preferably resource representation).

	
class graceful.resources.mixins.CreateMixin

	Bases: graceful.resources.mixins.BaseMixin

Add default “creation flow on POST” to any resource class.

	
create(params, meta, **kwargs)

	Create new resource instance and return its representation.

This is default resource instance creation method. Value returned
is the representation of single resource instance. It will be included
in the ‘content’ section of response body.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict) – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
get_object_location(obj)

	Return location URI associated with given resource representation.

This handler is optional. Returned URI will be included as the
value of Location header on POST responses.

	
on_post(req, resp, handler=None, **kwargs)

	Respond on POST HTTP request assuming resource creation flow.

This request handler assumes that POST requests are associated with
resource creation. Thus default flow for such requests is:

	Create new resource instance and prepare its representation by
calling its creation method handler.

	Try to retrieve URI of newly created object using
self.get_object_location(). If it succeeds use that URI as the
value of Location header in response object instance.

	Set response status code to 201 Created.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – creation method handler to be called. Defaults
to self.create.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.DeleteMixin

	Bases: graceful.resources.mixins.BaseMixin

Add default “delete flow on DELETE” to any resource class.

	
delete(params, meta, **kwargs)

	Delete existing resource instance.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
on_delete(req, resp, handler=None, **kwargs)

	Respond on DELETE HTTP request assuming resource deletion flow.

This request handler assumes that DELETE requests are associated with
resource deletion. Thus default flow for such requests is:

	Delete existing resource instance.

	Set response status code to 202 Accepted.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – deletion method handler to be called. Defaults
to self.delete.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.ListMixin

	Bases: graceful.resources.mixins.BaseMixin

Add default “list flow on GET” to any resource class.

	
list(params, meta, **kwargs)

	List existing resource instances and return their representations.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
on_get(req, resp, handler=None, **kwargs)

	Respond on GET HTTP request assuming resource list retrieval flow.

This request handler assumes that GET requests are associated with
resource list retrieval. Thus default flow for such requests is:

	Retrieve list of existing resource instances and prepare their
representations by calling list retrieval method handler.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – list method handler to be called. Defaults
to self.list.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.PaginatedMixin

	Bases: graceful.resources.base.BaseResource

Add simple pagination capabilities to resource.

This class provides two additional parameters with some default
descriptions and add_pagination_meta method that can update
meta with more useful pagination information.

Example usage:

from graceful.resources.mixins import PaginatedMixin
from graceful.resources.generic import ListResource

class SomeResource(PaginatedMixin, ListResource):

 def list(self, params, meta):
 # params has now 'page' and 'page_size' params that
 # can be used for offset&limit-like operations
 self.add_pagination_meta(params, meta)

 # ...

	
add_pagination_meta(params, meta)

	Extend default meta dictionary value with pagination hints.

Note

This method handler attaches values to meta dictionary without
changing it’s reference. This means that you should never replace
meta dictionary with any other dict instance but simply modify
its content.

	Parameters:	
	params (dict) – dictionary of decoded parameter values

	meta (dict) – dictionary of meta values attached to response

	
class graceful.resources.mixins.RetrieveMixin

	Bases: graceful.resources.mixins.BaseMixin

Add default “retrieve flow on GET” to any resource class.

	
on_get(req, resp, handler=None, **kwargs)

	Respond on GET HTTP request assuming resource retrieval flow.

This request handler assumes that GET requests are associated with
single resource instance retrieval. Thus default flow for such requests
is:

	Retrieve single resource instance of prepare its representation by
calling retrieve method handler.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – list method handler to be called. Defaults
to self.list.

	**kwargs – additional keyword arguments retrieved from url template.

	
retrieve(params, meta, **kwargs)

	Retrieve existing resource instance and return its representation.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
class graceful.resources.mixins.UpdateMixin

	Bases: graceful.resources.mixins.BaseMixin

Add default “update flow on PUT” to any resource class.

	
on_put(req, resp, handler=None, **kwargs)

	Respond on PUT HTTP request assuming resource update flow.

This request handler assumes that PUT requests are associated with
resource update/modification. Thus default flow for such requests is:

	Modify existing resource instance and prepare its representation by
calling its update method handler.

	Set response status code to 202 Accepted.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – update method handler to be called. Defaults
to self.update.

	**kwargs – additional keyword arguments retrieved from url template.

	
update(params, meta, **kwargs)

	Update existing resource instance and return its representation.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graceful	

 	
 	
 graceful.errors	

 	
 	
 graceful.fields	

 	
 	
 graceful.parameters	

 	
 	
 graceful.resources.base	

 	
 	
 graceful.resources.generic	

 	
 	
 graceful.resources.mixins	

 	
 	
 graceful.serializers	

 	
 	
 graceful.validators	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__new__() (graceful.resources.base.MetaResource static method)

 	(graceful.serializers.MetaSerializer static method)

 	
 	__prepare__() (graceful.resources.base.MetaResource class method)

 	(graceful.serializers.MetaSerializer class method)

A

 	
 	add_pagination_meta() (graceful.resources.mixins.PaginatedMixin method)

 	allowed_methods() (graceful.resources.base.BaseResource method)

 	
 	as_bad_request() (graceful.errors.DeserializationError method)

 	(graceful.errors.ValidationError method)

 	as_invalid_param() (graceful.errors.ValidationError method)

B

 	
 	Base64EncodedParam (class in graceful.parameters)

 	BaseField (class in graceful.fields)

 	BaseMixin (class in graceful.resources.mixins)

 	BaseParam (class in graceful.parameters)

 	
 	BaseResource (class in graceful.resources.base)

 	BaseSerializer (class in graceful.serializers)

 	BoolField (class in graceful.fields)

 	BoolParam (class in graceful.parameters)

C

 	
 	choices_validator() (in module graceful.validators)

 	container (graceful.parameters.BaseParam attribute)

 	
 	create() (graceful.resources.mixins.CreateMixin method)

 	CreateMixin (class in graceful.resources.mixins)

D

 	
 	DecimalParam (class in graceful.parameters)

 	delete() (graceful.resources.mixins.DeleteMixin method)

 	DeleteMixin (class in graceful.resources.mixins)

 	describe() (graceful.fields.BaseField method)

 	(graceful.parameters.BaseParam method)

 	(graceful.resources.base.BaseResource method)

 	(graceful.resources.generic.ListAPI method)

 	(graceful.resources.generic.RetrieveAPI method)

 	(graceful.serializers.BaseSerializer method)

 	
 	DeserializationError

F

 	
 	fields (graceful.serializers.BaseSerializer attribute)

 	FloatField (class in graceful.fields)

 	FloatParam (class in graceful.parameters)

 	from_representation() (graceful.fields.BaseField method)

 	(graceful.fields.BoolField method)

 	(graceful.fields.FloatField method)

 	(graceful.fields.IntField method)

 	(graceful.fields.RawField method)

 	(graceful.fields.StringField method)

 	(graceful.serializers.BaseSerializer method)

G

 	
 	get_attribute() (graceful.serializers.BaseSerializer method)

 	get_object_location() (graceful.resources.mixins.CreateMixin method)

 	graceful.errors (module)

 	graceful.fields (module)

 	graceful.parameters (module)

 	
 	graceful.resources.base (module)

 	graceful.resources.generic (module)

 	graceful.resources.mixins (module)

 	graceful.serializers (module)

 	graceful.validators (module)

H

 	
 	handle() (graceful.resources.mixins.BaseMixin method)

I

 	
 	IntField (class in graceful.fields)

 	
 	IntParam (class in graceful.parameters)

L

 	
 	list() (graceful.resources.mixins.ListMixin method)

 	ListAPI (class in graceful.resources.generic)

 	
 	ListCreateAPI (class in graceful.resources.generic)

 	ListMixin (class in graceful.resources.mixins)

 	ListResource (class in graceful.resources.generic)

M

 	
 	make_body() (graceful.resources.base.BaseResource method)

 	match_validator() (in module graceful.validators)

 	max_validator() (in module graceful.validators)

 	
 	MetaResource (class in graceful.resources.base)

 	MetaSerializer (class in graceful.serializers)

 	min_validator() (in module graceful.validators)

O

 	
 	on_delete() (graceful.resources.mixins.DeleteMixin method)

 	on_get() (graceful.resources.generic.ListAPI method)

 	(graceful.resources.generic.RetrieveAPI method)

 	(graceful.resources.mixins.ListMixin method)

 	(graceful.resources.mixins.RetrieveMixin method)

 	
 	on_options() (graceful.resources.base.BaseResource method)

 	on_post() (graceful.resources.generic.ListCreateAPI method)

 	(graceful.resources.mixins.CreateMixin method)

 	on_put() (graceful.resources.generic.RetrieveUpdateAPI method)

 	(graceful.resources.mixins.UpdateMixin method)

P

 	
 	PaginatedListAPI (class in graceful.resources.generic)

 	PaginatedListCreateAPI (class in graceful.resources.generic)

 	
 	PaginatedMixin (class in graceful.resources.mixins)

 	params (graceful.resources.base.BaseResource attribute)

R

 	
 	RawField (class in graceful.fields)

 	require_meta_and_content() (graceful.resources.base.BaseResource method)

 	require_params() (graceful.resources.base.BaseResource method)

 	require_representation() (graceful.resources.base.BaseResource method)

 	require_validated() (graceful.resources.base.BaseResource method)

 	
 	Resource (class in graceful.resources.generic)

 	retrieve() (graceful.resources.mixins.RetrieveMixin method)

 	RetrieveAPI (class in graceful.resources.generic)

 	RetrieveMixin (class in graceful.resources.mixins)

 	RetrieveUpdateAPI (class in graceful.resources.generic)

 	RetrieveUpdateDeleteAPI (class in graceful.resources.generic)

S

 	
 	serializer (graceful.resources.base.BaseResource attribute)

 	(graceful.resources.generic.RetrieveAPI attribute)

 	set_attribute() (graceful.serializers.BaseSerializer method)

 	spec (graceful.fields.BaseField attribute)

 	(graceful.parameters.Base64EncodedParam attribute)

 	(graceful.parameters.BaseParam attribute)

 	
 	StringField (class in graceful.fields)

 	StringParam (class in graceful.parameters)

T

 	
 	to_representation() (graceful.fields.BaseField method)

 	(graceful.fields.BoolField method)

 	(graceful.fields.FloatField method)

 	(graceful.fields.IntField method)

 	(graceful.fields.RawField method)

 	(graceful.fields.StringField method)

 	(graceful.serializers.BaseSerializer method)

 	type (graceful.fields.BaseField attribute)

 	(graceful.fields.BoolField attribute)

 	(graceful.fields.FloatField attribute)

 	(graceful.fields.IntField attribute)

 	(graceful.fields.RawField attribute)

 	(graceful.fields.StringField attribute)

 	(graceful.parameters.BaseParam attribute)

 	(graceful.parameters.BoolParam attribute)

 	(graceful.parameters.DecimalParam attribute)

 	(graceful.parameters.FloatParam attribute)

 	(graceful.parameters.IntParam attribute)

 	(graceful.parameters.StringParam attribute)

U

 	
 	update() (graceful.resources.mixins.UpdateMixin method)

 	
 	UpdateMixin (class in graceful.resources.mixins)

V

 	
 	validate() (graceful.fields.BaseField method)

 	(graceful.serializers.BaseSerializer method)

 	validated_value() (graceful.parameters.BaseParam method)

 	ValidationError

 	value() (graceful.parameters.Base64EncodedParam method)

 	(graceful.parameters.BaseParam method)

 	(graceful.parameters.BoolParam method)

 	(graceful.parameters.DecimalParam method)

 	(graceful.parameters.FloatParam method)

 	(graceful.parameters.IntParam method)

 	(graceful.parameters.StringParam method)

 [image: Build Status] [https://travis-ci.org/swistakm/graceful] [image: Coverage Status] [https://coveralls.io/r/swistakm/graceful?branch=master] [image: Documentation Status] [http://graceful.readthedocs.io/en/latest/]

graceful

graceful is elegant Python REST toolkit built on top of
falcon [http://github.com/falconry/falcon]. It is highly inspired by
Django REST framework [http://www.django-rest-framework.org/] -
mostly by how object serialization is done but more emphasis here is put
on API to be self-descriptive.

Features:

	generic classes for list and single object resources

	simple but extendable pagination

	structured responses with content/meta separation

	declarative fields and parameters

	self-descriptive-everything: API description accessible both in
python and through OPTIONS requests

	painless validation

	100% tests coverage

	falcon>=0.3.0 (tested up to 1.0.x)

	python3 exclusive (tested from 3.3 to 3.5)

There is no community behind graceful yet but I hope we will build one
someday with your help. Anyway there is a mailing list on
Librelist [http://librelist.com]. Just send an email to
graceful@librelist.com and you’re subscribed.

python3 only

Important: graceful is python3 exclusive because right now
should be a good time to forget about python2. There are no plans for
making graceful python2 compatibile although it would be pretty
straightforward do do so with existing tools (like six).

usage

For extended tutorial and more information please refer to
guide [http://graceful.readthedocs.org/en/latest/guide/] included in
documentation.

Anyway here is simple example of working API made made with
graceful:

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (
 RetrieveAPI,
 PaginatedListAPI,
)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [
 {"id": 0, "name": "kitty", "breed": "saimese"},
 {"id": 1, "name": "lucie", "breed": "maine coon"},
 {"id": 2, "name": "molly", "breed": "sphynx"},
]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):
 id = IntField("cat identification number", read_only=True)
 name = RawField("cat name")
 breed = RawField("official breed name")

class Cat(RetrieveAPI):
 """
 Single cat identified by its id
 """
 serializer = CatSerializer()

 def get_cat(self, cat_id):
 try:
 return [
 cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)
][0]
 except IndexError:
 raise falcon.HTTPNotFound

 def retrieve(self, params, meta, **kwargs):
 cat_id = kwargs['cat_id']
 return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 serializer = CatSerializer()

 breed = StringParam("set this param to filter cats by breed")

 def list(self, params, meta, **kwargs):
 if 'breed' in params:
 filtered = [
 cat for cat in CATS_STORAGE
 if cat['breed'] == params['breed']
]
 return filtered
 else:
 return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it
with gunicorn [https://github.com/benoitc/gunicorn]:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome
httpie [http://httpie.org] tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
 "content": [
 {
 "breed": "saimese",
 "id": 0,
 "name": "kitty"
 }
],
 "meta": {
 "params": {
 "breed": "saimese",
 "indent": 0
 }
 }
}

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
 "details": "List of all cats in our API",
 "fields": {
 "breed": {
 "details": "official breed name",
 "label": null,
 "spec": null,
 "type": "string"
 },
 "id": {
 "details": "cat identification number",
 "label": null,
 "spec": null,
 "type": "int"
 },
 "name": {
 "details": "cat name",
 "label": null,
 "spec": null,
 "type": "string"
 }
 },
 "methods": [
 "GET",
 "OPTIONS"
],
 "name": "CatList",
 "params": {
 "breed": {
 "default": null,
 "details": "set this param to filter cats by breed",
 "label": null,
 "required": false,
 "spec": null,
 "type": "string"
 },
 "indent": {
 "default": "0",
 "details": "JSON output indentation. Set to 0 if output should not be formated.",
 "label": null,
 "required": false,
 "spec": null,
 "type": "integer"
 }
 },
 "path": "/v0/cats",
 "type": "list"
}

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There is only short set of rules that guide this project
development you should be aware of before submitting a pull request:

	Only requests that have passing CI builds (Travis) will be merged.

	Code is checked with flakes8 and pydocstyle during build so
this implicitely means that compliance with PEP-8 and PEP-257 are
mandatory.

	No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitely. Reviewing pull requests that suddenly
had their history rewritten just drives me crazy.

license

See LICENSE file.

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		graceful - falcon REST done with grace

 		Graceful guide

 		Resources

 		Generic API resources

 		RetrieveAPI

 		RetrieveUpdateAPI

 		RetrieveUpdateDeleteAPI

 		ListAPI

 		ListCreateAPI

 		Paginated generic resources

 		Generic resources without serialization

 		Parameters

 		Custom parameters

 		Parameter validation

 		Handling multiple occurences of parameters

 		Serializers and fields

 		Field arguments

 		Field validation

 		Resource validation

 		Custom fields

 		Content types

 		Documenting your API

 		Using self-descriptive resources

 		Self-hosted documentation

 		API reference

 		graceful package

 		graceful.fields module

 		graceful.parameters module

 		graceful.serializers module

 		graceful.validators module

 		graceful.errors module

 		graceful.resources package

 		graceful.resources.base module

 		graceful.resources.generic module

 		graceful.resources.mixins module

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

