
graceful Documentation
Release 0.5.0

Michał Jaworski

Apr 14, 2017

Contents

1 python3 only 3

2 usage 5

3 contributing 9

4 license 11

5 Contents 13
5.1 graceful . 13

5.1.1 python3 only . 13
5.1.2 usage . 13
5.1.3 contributing . 16
5.1.4 license . 17

5.2 Graceful guide . 17
5.2.1 Resources . 17
5.2.2 Generic API resources . 17
5.2.3 Parameters . 25
5.2.4 Serializers and fields . 32
5.2.5 Authentication and authorization . 35
5.2.6 Working with resources . 42
5.2.7 Content types . 43
5.2.8 Documenting your API . 44

5.3 API reference . 49
5.3.1 graceful package . 49
5.3.2 graceful.resources package . 65

6 Indices and tables 75

Python Module Index 77

i

ii

graceful Documentation, Release 0.5.0

graceful is an elegant Python REST toolkit built on top of falcon framework. It is highly inspired by Django REST
framework - mostly by how object serialization is done but more emphasis here is put on API to be self-descriptive.

Features:

• generic classes for list and single object resources

• simple but extendable pagination

• simple but extendable authentication and authorization

• structured responses with content/meta separation

• declarative fields and parameters

• self-descriptive-everything: API description accessible both in python and through OPTIONS requests

• painless validation

• 100% tests coverage

• falcon>=0.3.0 (tested up to 1.1.x)

• python3 exclusive (tested from 3.3 to 3.6)

Community behind graceful is starting to grow but we don’t have any mailing list yet. There was one on Librelist but
no one used it and it seems that librelist became dead (see GitHub issue #36). For now let’s use gitter chat until we
decide on something new. Chat is available here.

Contents 1

http://github.com/falconry/falcon
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
http://librelist.com/browser/graceful
https://github.com/swistakm/graceful/issues/36
https://gitter.im/graceful-for-falcon/Lobby

graceful Documentation, Release 0.5.0

2 Contents

CHAPTER 1

python3 only

Important: graceful is python3 exclusive because right now should be a good time to forget about python2.
There are no plans for making graceful python2 compatible although it would be pretty straightforward to do so
with existing tools (like six).

3

graceful Documentation, Release 0.5.0

4 Chapter 1. python3 only

CHAPTER 2

usage

For extended tutorial and more information please refer to guide included in documentation.

Anyway here is simple example of working API made made with graceful:

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (

RetrieveAPI,
PaginatedListAPI,

)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [

{"id": 0, "name": "kitty", "breed": "saimese"},
{"id": 1, "name": "lucie", "breed": "maine coon"},
{"id": 2, "name": "molly", "breed": "sphynx"},

]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):

id = IntField("cat identification number", read_only=True)
name = RawField("cat name")
breed = RawField("official breed name")

class Cat(RetrieveAPI):
"""
Single cat identified by its id
"""
serializer = CatSerializer()

def get_cat(self, cat_id):
try:

return [
cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)

][0]
except IndexError:

5

https://graceful.readthedocs.org/en/latest/guide/

graceful Documentation, Release 0.5.0

raise falcon.HTTPNotFound

def retrieve(self, params, meta, **kwargs):
cat_id = kwargs['cat_id']
return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
"""
List of all cats in our API
"""
serializer = CatSerializer()

breed = StringParam("set this param to filter cats by breed")

def list(self, params, meta, **kwargs):
if 'breed' in params:

filtered = [
cat for cat in CATS_STORAGE
if cat['breed'] == params['breed']

]
return filtered

else:
return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it with gunicorn:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome httpie tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
"content": [

{
"breed": "saimese",
"id": 0,
"name": "kitty"

}
],
"meta": {

"params": {
"breed": "saimese",
"indent": 0

}
}

}

6 Chapter 2. usage

https://github.com/benoitc/gunicorn
http://httpie.org

graceful Documentation, Release 0.5.0

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
"details": "List of all cats in our API",
"fields": {

"breed": {
"details": "official breed name",
"label": null,
"spec": null,
"type": "string"

},
"id": {

"details": "cat identification number",
"label": null,
"spec": null,
"type": "int"

},
"name": {

"details": "cat name",
"label": null,
"spec": null,
"type": "string"

}
},
"methods": [

"GET",
"OPTIONS"

],
"name": "CatList",
"params": {

"breed": {
"default": null,
"details": "set this param to filter cats by breed",
"label": null,
"required": false,
"spec": null,
"type": "string"

},
"indent": {

"default": "0",
"details": "JSON output indentation. Set to 0 if output should not be

→˓formated.",
"label": null,
"required": false,
"spec": null,
"type": "integer"

}
},
"path": "/v0/cats",
"type": "list"

7

graceful Documentation, Release 0.5.0

}

8 Chapter 2. usage

CHAPTER 3

contributing

Any contribution is welcome. Issues, suggestions, pull requests - whatever. There is only short set of rules that guide
this project development you should be aware of before submitting a pull request:

• Only requests that have passing CI builds (Travis) will be merged.

• Code is checked with flakes8 and pydocstyle during build so this implicitly means that compliance with
PEP-8 and PEP-257 is mandatory.

• No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you are asked for that explicitly. Reviewing pull
requests that suddenly had their history rewritten just drives me crazy.

9

graceful Documentation, Release 0.5.0

10 Chapter 3. contributing

CHAPTER 4

license

See LICENSE file.

11

graceful Documentation, Release 0.5.0

12 Chapter 4. license

CHAPTER 5

Contents

graceful

graceful is an elegant Python REST toolkit built on top of falcon framework. It is highly inspired by Django REST
framework - mostly by how object serialization is done but more emphasis here is put on API to be self-descriptive.

Features:

• generic classes for list and single object resources

• simple but extendable pagination

• simple but extendable authentication and authorization

• structured responses with content/meta separation

• declarative fields and parameters

• self-descriptive-everything: API description accessible both in python and through OPTIONS requests

• painless validation

• 100% tests coverage

• falcon>=0.3.0 (tested up to 1.1.x)

• python3 exclusive (tested from 3.3 to 3.6)

Community behind graceful is starting to grow but we don’t have any mailing list yet. There was one on Librelist but
no one used it and it seems that librelist became dead (see GitHub issue #36). For now let’s use gitter chat until we
decide on something new. Chat is available here.

python3 only

Important: graceful is python3 exclusive because right now should be a good time to forget about python2.
There are no plans for making graceful python2 compatible although it would be pretty straightforward to do so
with existing tools (like six).

usage

For extended tutorial and more information please refer to guide included in documentation.

Anyway here is simple example of working API made made with graceful:

13

http://github.com/falconry/falcon
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
http://librelist.com/browser/graceful
https://github.com/swistakm/graceful/issues/36
https://gitter.im/graceful-for-falcon/Lobby
https://graceful.readthedocs.org/en/latest/guide/

graceful Documentation, Release 0.5.0

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (

RetrieveAPI,
PaginatedListAPI,

)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [

{"id": 0, "name": "kitty", "breed": "saimese"},
{"id": 1, "name": "lucie", "breed": "maine coon"},
{"id": 2, "name": "molly", "breed": "sphynx"},

]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):

id = IntField("cat identification number", read_only=True)
name = RawField("cat name")
breed = RawField("official breed name")

class Cat(RetrieveAPI):
"""
Single cat identified by its id
"""
serializer = CatSerializer()

def get_cat(self, cat_id):
try:

return [
cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)

][0]
except IndexError:

raise falcon.HTTPNotFound

def retrieve(self, params, meta, **kwargs):
cat_id = kwargs['cat_id']
return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
"""
List of all cats in our API
"""
serializer = CatSerializer()

breed = StringParam("set this param to filter cats by breed")

def list(self, params, meta, **kwargs):
if 'breed' in params:

filtered = [
cat for cat in CATS_STORAGE

14 Chapter 5. Contents

graceful Documentation, Release 0.5.0

if cat['breed'] == params['breed']
]
return filtered

else:
return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it with gunicorn:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome httpie tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
"content": [

{
"breed": "saimese",
"id": 0,
"name": "kitty"

}
],
"meta": {

"params": {
"breed": "saimese",
"indent": 0

}
}

}

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
"details": "List of all cats in our API",
"fields": {

"breed": {
"details": "official breed name",
"label": null,
"spec": null,
"type": "string"

5.1. graceful 15

https://github.com/benoitc/gunicorn
http://httpie.org

graceful Documentation, Release 0.5.0

},
"id": {

"details": "cat identification number",
"label": null,
"spec": null,
"type": "int"

},
"name": {

"details": "cat name",
"label": null,
"spec": null,
"type": "string"

}
},
"methods": [

"GET",
"OPTIONS"

],
"name": "CatList",
"params": {

"breed": {
"default": null,
"details": "set this param to filter cats by breed",
"label": null,
"required": false,
"spec": null,
"type": "string"

},
"indent": {

"default": "0",
"details": "JSON output indentation. Set to 0 if output should not be

→˓formated.",
"label": null,
"required": false,
"spec": null,
"type": "integer"

}
},
"path": "/v0/cats",
"type": "list"

}

contributing

Any contribution is welcome. Issues, suggestions, pull requests - whatever. There is only short set of rules that guide
this project development you should be aware of before submitting a pull request:

• Only requests that have passing CI builds (Travis) will be merged.

• Code is checked with flakes8 and pydocstyle during build so this implicitly means that compliance with
PEP-8 and PEP-257 is mandatory.

• No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you are asked for that explicitly. Reviewing pull
requests that suddenly had their history rewritten just drives me crazy.

16 Chapter 5. Contents

graceful Documentation, Release 0.5.0

license

See LICENSE file.

Graceful guide

Resources

Resources are main building blocks in falcon. This is also true with graceful.

The most basic resource of all is a graceful.resources.base.BaseResource and all other resource classes
in in this package inherit from BaseResource. It will not provide you with full set graceful features (like object
serialization, pagination, resource fields descriptions etc.) but it is a good starting point if you want to build everything
by yourself but still need to have some consistent response structure and self-descriptive parameters.

In most cases (simple GET-allowed resources) you need only to provide your own http GET method handler like
following:

from graceful.resources.base import BaseResource
from graceful.parameters import StringParam, IntParam

class SomeResource(BaseResource):
describe how HTTP query string parameters are handled
some_param = StringParam("example string query string param")
some_other_param = IntParam("example integer query string param")

def on_get(self, req, resp):
retrieve dictionary of query string parameters parsed
and validated according to resource class description
params = self.require_params(req)

create your own response like always:
resp.body = "some content"

or use following:
self.make_body(resp, params, {}, 'some content')

Note: Due to how falcon works there is always only a single instance of the resource class for a single registered route.
Please remember to not keep any request processing state inside of this object using self.attribute lookup. If
you need to store and access some additional unique data during whole request processing flow you may want to use
context-aware resource classes.

Generic API resources

graceful provides you with some set of generic resources in order to help you describe how structured is data in your
API. All of them expect that some serializer instance is provided as a class level attribute. Serializer will handle
describing resource fields and also translation between resource representation and internal object values that you use
inside of your application.

5.2. Graceful guide 17

graceful Documentation, Release 0.5.0

RetrieveAPI

RetrieveAPI represents single element serialized resource. In ‘content’ section of GET response it will return
single object. On OPTIONSrequest it will return additional field named ‘fields’ that describes all serializer fields.

It expects from you to implement .retrieve(self,params,meta,**kwargs) method handler that retrieves
single object (e.g. from some storage) that will be later serialized using provided serializer.

retrieve() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveAPI):
serializer = RawSerializer()

def retrieve(self, params, meta, foo_id, **kwargs):
return db.Foo.get(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateAPI

RetrieveUpdateAPI extends RetrieveAPI with capability to update objects with new data from resource
representation provided in PUT request body.

It expects from you to implement same handlers as for RetrieveAPI and also new
.update(self,params,meta,validated,**kwargs) method handler that updates single object
(e.g. in some storage). Updated object may or may not be returned in response ‘content’ section (this is optional)

update() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• validated (dict): dictionary of internal object fields values after converting from representation with full valida-
tion performed accordingly to definition contained within serializer instance.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

If update will return any value it should have same form as return value of retrieve() because it will be again
translated into representation with serializer.

Example usage:

18 Chapter 5. Contents

graceful Documentation, Release 0.5.0

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
serializer = RawSerializer()

def retrieve(self, params, meta, foo_id, **kwargs):
return db.Foo.get(id=foo_id)

def update(self, params, meta, foo_id, **kwargs):
return db.Foo.update(id=foo_id)

note: url template kwarg that will be passed to
`FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateDeleteAPI

RetrieveUpdateDeleteAPI extends RetrieveUpdateAPI with capability to delete objects using DELETE
requests.

It expects from you to implement same handlers as for RetrieveUpdateAPI and also new
.delete(self,params,meta,**kwargs) method handler that deletes single object (e.g. in some stor-
age).

delete() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
serializer = RawSerializer()

def retrieve(self, params, meta, foo_id, **kwargs):
return db.Foo.get(id=foo_id)

def update(self, params, meta, foo_id, **kwargs):
return db.Foo.update(id=foo_id)

def delete(self, params, meta, **kwargs):
db.Foo.delete(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

5.2. Graceful guide 19

graceful Documentation, Release 0.5.0

ListAPI

ListAPI represents list of resource instances. In ‘content’ section of GET response it will return list of serialized
objects representations. On OPTIONS request it will return additional field named ‘fields’ that describes all serializer
fields.

It expects from you to implement .list(self,params,meta,**kwargs) method handler that retrieves list
(or any iterable) of objects (e.g. from some storage) that will be later serialized using provided serializer.

list() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListAPI):
serializer = RawSerializer()

def list(self, params, meta, **kwargs):
return db.Foo.all(id=foo_id)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

ListCreateAPI

ListCreateAPI extends ListAPI with capability to create new objects with data from resource representation
provided in POST or PATCH request body.

It expects from you to implement same handlers as for ListAPI and also
new .create(self,params,meta,validated,**kwargs) and (optionally)
.create_bulk(self,params,meta,validated,**kwargs) method handlers that are able to cre-
ate single single and multiple objects (e.g. in some storage). Created object may or may not be returned in response
‘content’ section (this is optional)

create() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• validated (dict): a single dictionary of internal object fields values after converting from representation with
full validation performed accordingly to definition contained within serializer instance.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

create_bulk() accepts following arguments:

• params (dict): dictionary of parsed parameters accordingly to definitions provided as resource class atributes.

20 Chapter 5. Contents

graceful Documentation, Release 0.5.0

• meta (dict): dictionary of meta parameters anything added to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method that calls this handler.

• validated (dict): a list of multiple dictionaries of internal objects’ field values after converting from represen-
tation with full validation performed accordingly to definition contained within serializer instance.

• kwargs (dict): dictionary of values retrieved from route url template by falcon. This is suggested way for
providing resource identifiers.

If create() and create_bulk() return any value then it should have same form compatible with the return value
of retrieve() because it will be again translated into representation with serializer. Of course create() should
return single instance of resource but create_bulk() should return collection of resources.

Note that default implementation of ListCreateAPI.create_bulk() is very simple and may not be suited for
every use case. If you want to use it please refer to Guide for creating resources in bulk.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListCreateAPI):
serializer = RawSerializer()

def list(self, params, meta, **kwargs):
return db.Foo.all(id=foo_id)

def create(self, params, meta, validated, **kwargs):
return db.Foo.create(**validated)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

Paginated generic resources

PaginatedListAPI and PaginatedListCreateAPI are versions of ListAPI and ListAPI classes that
support simple pagination with following parameters:

• page_size: size of a single response page

• page: page count

They also will ‘meta’ section with following information on GET requests:

• page_size

• page

• next - url query string for next page (only if meta['is_more'] exists and is True)

• prev - url query string for previous page (None if first page)

Paginated variations of generic list resource do not assume anything about your resources so actual pagination must
still be implemented inside of list() handlers. Anyway this class allows you to manage params and meta for
pagination in consistent way across all of your resources if you only decide to use it:

db = SomeDBInterface()
api = application = falcon.API()

class FooPaginatedResource(PaginatedListAPI):

5.2. Graceful guide 21

graceful Documentation, Release 0.5.0

serializer = RawSerializer()

def list(self, params, meta, **kwargs):
query = db.Foo.all(id=foo_id).offset(

params['page'] * params['page_size']
).limit(

params['page_size']
)

use meta['has_more'] to find out if there are
any pages behind this one
if db.Foo.count() > (params['page'] + 1) * params['page_size']:

meta['has_more'] = True

return query

api.add_route('foo/', FooPaginatedtResource())

Note: If you don’t like anything about this opinionated meta section that paginated generic resources provide, you
can always override it with own add_pagination_meta(params,meta) method handler.

Generic resources without serialization

If you don’t like how serializers work there are also two very basic generic resources that does not rely on serializers:
Resource and ListResource. They can be extended with mixins found in graceful.resources.mixins
module and provide the same method handlers like the generic resources that utilize serializers (i.e. list(),
retrieve(), update() and so on). Note that they do not perform anything beyond content-type level serial-
ization.

Guide for creating resources in bulk

ListCreateAPI ships with default implementation of create_bulk() method that will call the create()
method separately for every resource instance retrieved from request payload. The actual code is following:

def create_bulk(self, params, meta, **kwargs):
validated = kwargs.pop('validated')
return [self.create(params, meta, validated=item) for item in validated]

This approach to bulk resource creation may not be the most performant one if you save resource instance to your
storage on every create() call. The other concern is whether you care about data consistency in your storage and
want to ensure the “all or nothing” semantics. With default bulk creation handler it may be hard to enforce such
contraints. Anyway, you can easily override this method to suit your own needs.

There are at least three ways you can handle bulk resource creation in graceful:

• Completely separate bulk and single resource creation: allow create() and create_bulk() handlers to
have their own separate code responsible for saving data in the storage.

• Deffered saves: Allow your create() handler to skip saves if specific keyword parameter is set and then do
your saves in th create_bulk() handler.

• Utilize your storage transactions: Wrap your data processing with per-request transaction to ensure “all or
nothing” semantics on database level.

22 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Completely separate bulk and single resource creation

This approach is simplest to implement but makes only sense if the process of your resource creation is very simple
and heavily relies on serializers to validate and prepare your data before save.

Assume your API allows to create and retrieve simple documents in some simple storage that may even not be a real
database. Good example would be an API dealing with Solr search engine:

from pysolr import Solr

from graceful.serializers import BaseSerializer
from graceful.fields import StringField
from graceful.resources.generic import ListCreateAPI

solr = Solr("<solr url>", "<solr port>")

class DocumentSerializer(BaseSerializer):
text = StringField("Document content")
author = StringField(

"Document author",
note: Assume that due to legacy reasons this field
is stored under different name in Solr.
graceful is great in dealing with such problems!
source="autor_name_t"

)

class DocumentsAPI(ListCreateAPI):
def list(self, params, meta, **kwargs):

return solr.search("*:*")

def create(self, params, meta, validated, **kwargs):
solr.add([validated])
note: return document back so its representation
can be included in response body
return validated

Solr search engine is especially good example here because it will not handle well multiple single-ducument save
requests and the best approach is to batch them. The pysolr module (popular library for integration with solr)
allows you to save multiple documents with single Solr.add() call. Actually, it even encourages you to batch
documents using single call because it accepts only list as input argument.

Let’s override the default create_bulk() so it will save all the documents it receives as the validated argument
without calling create() handler:

class DocumentsAPI(ListCreateAPI):
def list(self, params, meta, **kwargs):

return solr.search("*:*")

def create(self, params, meta, validated, **kwargs):
solr.add([validated])
note: return document back so its representation
can be included in the response body
return validated

def create_bulk(self, params, meta, validated, **kwargs):
solr.add(validated)

5.2. Graceful guide 23

graceful Documentation, Release 0.5.0

note: return documents back so their representation
can be included in the response body
return validated

Note that above technique works best for simple use cases where the validated argument represents complete data
that can be easily saved directly to your storage without any further modification.

If you need any additional processing of resources in your custom create() and create_bulk()methods before
saving them to your storage, the code can quickly become hard to mantain. Anyway, you can start with this approach
and refactor it later into deferred saves pattern as these two are very alike and offer similar advantages.

Deferred saves

In previous section we said that having separate code that independently saves single resource and resources in bulk
may not be a best approach if you need to make some additional data processing before saves. No matter if you do a
non-serializer-based data validation or talk to some other external services, you will need to duplicate this additional
processing code in both handlers. With proper approach you can limit the code duplication by extrating your resource
processing procedures to additial methods but it will eventually make things unnecessarily complex and will still be
hard to maintain.

A little improvement to previous code is to reuse single resource creation handler in your custom create_bulk()
implementation but allow the create() handler to skip saving data to storage on the caller’s demand. Thus any per-
resource processing will always stay in the create() handler code and the create_bulk() will be responsible
only for saving the data in bulk:

class DocumentsAPI(ListCreateAPI):
def list(self, params, meta, **kwargs):

return solr.search("*:*")

def create(self, params, meta, validated, skip_save=False, **kwargs):
do some additional processing like adding defaults etc.
validated['created_at'] = time.time()

note: skip_save defaults to False on ordinary POST requests
this means ``create()`` was called in single-resource mode
if not skip_save:

solr.add([validated])

note: return document back so its representation
can be included in the response body
return validated

def create_bulk(self, params, meta, validated, **kwargs):
validated = kwargs.pop('validated')

processed = [
self.create(params, meta, item, skip_save=True)
for item in validated

]
solr.add(processed)

return processed

This way you can be sure that anything you add to the create() handler will also affect the resources created in
bulk. Additionally your API is more efficient because it can save the data in bulk with single request to your storage
backend instead of making multiple requests.

24 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Utilize your storage transactions

Sometimes you may not concerned about the performance of multiple small saves but only want to have the “all or
nothing” semantics of the bulk creation method. If the integration with your storage backend allows you to enforce
transactions on the block of code you can easily use such feature to make sure that all the separate saves done with
create() handler will take effect in the “all or nothing” manner. Good use case for such appoach could be working
with any RDBMS that allows to use transactions.

Let’s assume you have a per-request session object that wraps the integration with the storage backend and allows
you to set savepoints and commit/rollback transactions. Many ORM layers (e.g. SQLAlchemy) offer such kind of
object code for such technique may look very simillar for different storage providers:

note: example sqlachemy integration could work that way
engine = create_engine("...")
Session = sessionmaker(bind=engine)

class MyAPI(ListCreateAPI):
def on_post(req, resp, **kwargs):

inject session object into kwargs so it can be later
used by ``create()`` handler to manipulate storage
and manage transaction
session = Session()
try:

super().on_post(req, resp, session=session, **kwargs)
except:

session.rollback()
raise

else:
session.commit()

def on_patch(req, resp, **kwargs):
inject session object into kwargs so it can be later
used by ``create_bulk()`` handler to manipulate storage
and manage transaction
session = Session()
try:

super().on_patch(req, resp, session=session, **kwargs)
except:

session.rollback()
raise

else:
session.commit()

Parameters

Parameters provide a way to describe and evaluate all request query params that can be used in your API resources.

New parameters are added to resources as class attributes:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
filter_by_name = StringParam("Filter resource instances by their name")
depth = IntParam("Set depth of search")

5.2. Graceful guide 25

graceful Documentation, Release 0.5.0

Class attribute names map directly to names expected in the query string. For example the valid query strings in scope
of preceding definition could be:

• filter_by_name=cats

• filter_by_name=dogs&depth=2

All param classes accept this set of arguments:

• details (str): verbose description of parameter. Should contain all information that may be important to your
API user and will be used for describing resource on OPTIONS requests and .describe() call.

• label (str): human readable label for this parameter (it will be used for describing resource on OPTIONS
requests).

Note that it is recomended to use parameter names that are self-explanatory intead of relying on param labels.

• required (bool): if set to True then all GET, POST, PUT, PATCH and DELETE requests will return 400 Bad
Request response if query param is not provided.

• default (str): set default value for param if it is not provided in request as query parameter. This MUST be a
raw string value that will be then parsed by .value() handler.

If default is set and required is True it will raise ValueError as having required parameters with default
value has no sense.

• param (str): set to True if multiple occurences of this parameter can be included in query string, as a result
values for this parameter will be always included as a list in params dict. Defaults to False.

Note: If many==False and client inlcudes multiple values for this parameter in query string then only one
of those values will be returned, and it is undefined which one.

For list of all available parameter classes please refer to graceful.parameters module reference.

If you are using the bare falcon HTTP method handlers and sublcass directly from
graceful.resources.base.BaseResource then you can access all deserialized query parameters as
dictionary using require_params(req) method:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
filter_by_name = StringParam("Filter resource instances by their name")
depth = IntParam("Set depth of search")

def on_get(self, req, resp):
params = self.require_params(req)

The self.require_params(req) will try to retrieve all of described query parameters, validate them and
populate with defaults if they were not found in the query string. This method will also take care of raising the
falcon.errors.HTTPInvalidParam if:

• parameter specified as required=True was not provided

• parameter could not be parsed/validated (i.e. value() handler raised ValueError)

Note that you do not need to handle this exception manually. It will be later automatically transformed to 400 Bad
Request by falcon if not catched by try .. except clause.

If you are using generic resource classes from graceful.resources.generic like ListAPI or
RetrieveAPI the params retrieval step is done automatically and you do not need to care. Parameters dict will

26 Chapter 5. Contents

graceful Documentation, Release 0.5.0

be provided in applicable retrieval/modification method handler (list(), update(), retrieve etc.) and these
methods will be executed only if call to self.require_params(req) succeeded without raising any exceptions.

Custom parameters

Although graceful ships with some set of predefined parameter classes it is very likely that you need something that is
not yet covered because:

• it is not yet covered

• is very specific to your application

• it can be implemented in many ways and it is impossible to decide which is best without being too opinionated.

New parameter types can be created by subclassing BaseParam and and implementing .value(raw_value)
method handler. ValueError raised in this handler will eventually result in 400 Bad Request response.

Two additional class-level attributes help making more verbose parameter description:

• type - string containig name of primitive data type like: “int”, “string”, “float” etc. For most custom parameters
this will be simply “string” and it is used only for describtions so make sure it is something truely generic or
well described in your API documentation

• spec - two-tuple containing link name, and link url to any external documentation that you may find helpful for
developers.

Here is example of custom parameter that handles validation of alpha2 country codes using pycountry module:

import pycountry

class LanguageParam(BaseParam):
"""
This param normalizes language code passed to is and checks if it is valid
"""

type = 'ISO 639-2 alpha2 language code'
spec = (

'ISO 639-2 alpha2 code list',
"http://www.loc.gov/standards/iso639-2/php/code_list.php",

)

def value(self, raw_value):
try:

normalize code since we store then lowercase
normalized = raw_value.lower()
first of all check if country so no query will be made if it is
invalid
pycountry.languages.get(alpha2=normalized)

return normalized

except KeyError:
raise ValueError(

"'{code}' is not valid alpha2 language code"
"".format(code=raw_value)

)

5.2. Graceful guide 27

graceful Documentation, Release 0.5.0

Parameter validation

Custom parameters are great for defining new data types that can be passed through HTTP query string or handling
very specific cases like country codes, mime types, or even database filters. Still it may be sometimes an overkill to
define new parameter class to do something as simple as ensure min/max bounds for numeric value or define as set of
allowed choices.

All of basic parameters available in graceful accept validators keyword argument that accepts a list of validation
functions. These function will be always called upon parameter retrieval. This functionality allows you to quickly
extend the semantic of your parameters without the need of subclassing.

A validator is any callable that accepts single positional argument that will be a value returned from
call to the value() handler of parameter class. If validation funtion fails it is supposed to return
graceful.errors.ValidationError that will be later translated to proper HTTP error response. Follow-
ing is example of simple validation function which ensures that parameter string is palindrome:

from graceful.resources.base import BaseResource
from graceful.parameters import StrParam
from graceful.errors import ValidationError

def is_palindrome(value):
if value != value[::-1]:

raise ValidationError("{} is not a palindrome")

class FamousPhrases(Resource):
palindrome_query = StrParam(

"Palindrome text query", validators=[is_palindrome]
)

Validators always work on deserialized values and this allows to easily reuse the same code across different types of
parameters and also between fields (see: Field validation). Graceful takes advantage of this fact and already provides
you with a small set of fully reusable validators that can be used to validate both your parameters and serialization
fields. For more details see graceful.validators module reference.

Handling multiple occurences of parameters

The simplest way to allow user to specify multiple occurences of single parameter is to use many keyword argument.
It is available for every base parameter class initialization and it is good practice to not override this argument in
custom parameter classes using custom initialization.

If many is set to True for given parameter the resulting params dictionary available in main method handlers of
generic resources or through self.require_params(req) method will contain list of values for given resource
instead of single value.

For instance, if you are building some text search API and expect client to provide multiple search string in single
query you can describe your basic API as follows:

from graceful.parameters import StringParam
from graceful.resources.base import BaseResource

class SearchResource(BaseResource):
search = StringParam("text search string", many=True)

With such definition your client can provide list of multiple values for the search param using multiple instances of
search=<value> in his query string e.g:

28 Chapter 5. Contents

graceful Documentation, Release 0.5.0

search=matt&search=damon&search=affleck

Important: if many is set to False the value stored under corresponding key will always represent the single
parameter value. It is important to note that providing multiple values for same parameter in the query string by your
API client is not considered an error even if parameter is described as many=False. In that case only one value will
be included in parameters dictionary and it is not defined which one. When documenting your API you need to take
special care when informing which parameter supports muliple value and which not. You should also make sure to
inform API users of possibility of undefined behaviour when not following your instructions.

Order of values and ordered data

Remember that multiple values coming from parameter defined using many=True should be always considered
independend from each other. This means that order of resulting parameter values is always undefined. If you
need to handle parameters that represent specifically ordered list you probably need custom parameter class that that
will provide you with required serialization. Such representation is generally independent from the many argument of
such custom parameter class.

The reason for that design decision is because when order of data is important then usually the order by itself represents
is a named quality or entity.

The best way to undestand this is by example. For instance let’s assume that we are building some simple API that
allows to search through some inventory of clothes store. If we would like to allow clients to filter items by their colors
it completely makes sense to use following definition of query parameter:

color = StringParam("One of main color items", many=True)

But if you are building some spatial search engine you might want to allow user to search for data in region defined as
a polygon. Polygon can be simply represented by just an ordered list of points. But does it makes sense to define your
polygon as point parameter with many=True? Probably not. In case where order of data is important you need
some custom parameter class that will explicitly define how to handle such parameters. The naive implementation for
polygon parameter could be as follows: The naive

from graceful.parameters import BaseParam

class PolygonParam(BaseParam):
""" Represents polygon parameter in string form of "x1,y1;x2,y2;..."
"""
type = 'polygon'

def value(self, raw_value):
return [

[float(x) for x in point.split(',')]
for point in raw_value.split(';')

]

Such approach your will eventually make your code and API:

• Easier to understand - you will end up using parameter names that better explain what you and your API users
are dealing with.

• Easier to document - parameter class can be inspected for the purpose of auto documentation. Their basic
attributes (type and spec) are already included in default OPTIONS handler.

• Easier to extend - if you suddenly realize that you need to support multiple ordered sets of same type of data it
is as simple as adding additional many=True to declaration of parameter that represents some data container

5.2. Graceful guide 29

graceful Documentation, Release 0.5.0

Custom containers

With the many=True option multiple values for the same parameter will be returned as list. But sometimes you may
want to do additional processing when many option is enables. For instance you may want to concatenate all string
searches to single string, make sure all values are unique or join some ORM query sets using logical operator.

Of course it is completely valid approach to make such operation in your HTTP method handler (in case of using
BaseResource) or in your specific retrieval/update handler (in case of using generic resource classes). This is
usually very simple:

from graceful.parameters import StringParam
from graceful.resources.generic import PaginatedListAPI

class CatList(PaginatedListAPI):
"""
List of all cats in our API
"""
breed = StringParam(

"set this param to filter cats by breed"
many=True

)

def list(self, params, meta, **kwargs):
unique_breeds = set(param['breed']
...

Unfortunately, when you have a lot of different parameters that need similar handling (e.g. various ORM-specific filter
objects) this can become tedious and lead to excessive code duplication. The easiest way overcome this problem is to
use custom container handler for multiple parameter occurences. This can be done in your custom parameter class by
overriding its default container attribute.

The container handler can be both type object or a new method. It must accept list of values as its single positional
argument.

Following is an example StringParam re-implementation which additionally makes sure that multiple occurences
of the same parameter are all unique. Uniqueness is simply achieved by using built-in set type as its container
attribute:

from graceful.parameters import BaseParam

class UniqueStringParam(BaseParam):
"""Same as StringParam but on ``many=True`` returns set of values."""
container = set

As already said, container handler can be a method too. This is very useful for handling more complex use cases. For
instance solrq is a nice utility for creating Apache Solr search engine queries in Python. If your API somehow exposes
Solr search it would be nice to make parameter class that converts query string params directly to solrq.Q objects.
solrq allows also to easily join multiple query objects using binary AND and OR operators in similar fashion to
Django’s queryset filters:

>>> Q(text='cat') | Q(text='dog')
<Q: text:cat OR text:dog>

It really makes sense to take advantage of such feature in your parameter class that wraps GET params in solrq.Q
instances whenever many=True option is enabled. Following is example of custom parameter class that allows to
collapse multiple values of search queries to single solrq.Q instance with predefined operator:

30 Chapter 5. Contents

http://solrq.readthedocs.io/en/latest/
http://lucene.apache.org/solr/

graceful Documentation, Release 0.5.0

from graceful.params import StringParam

import operator
from functools import reduce

class FilterQueryParam(StringParam):
"""
Param that represents Solr filter queries logically
joined together depending on value of `op` argument
"""
def __init__(

self,
details,
solr_field,
op=operator.and_,

**kwargs
):

if solr_field is None:
raise ValueError(

"`solr_field` argument of {} cannot be None"
"".format(self.__class__.__name__)

)

self.solr_field = solr_field
self.op = op

super().__init__(details, **kwargs)

def value(self, raw_value):
return Q({self.solr_field: raw_value})

def container(self, values):
return reduce(self.op, values) if len(values) > 1 else values[0]

With such definition creating simple Solr-backed search API using graceful and without extensive object serialization
becomes pretty simple:

import operator

from solrq import Value as V
from pysolr import Solr
from graceful.resources.generic import ListAPI
from graceful.serializers import BaseSerializer

solr = Solr()

class VerbatimSerializer():
""" Represents object as it is assuming that we deal with simple dicts
"""
def to_representation(self, obj):

return obj

class Search(ListAPI):
serializer = VerbatimSerializer()

text = FilterQueryParam(

5.2. Graceful guide 31

graceful Documentation, Release 0.5.0

"Basix text search argumment (many values => AND)",
many=True,
solr_field='text'
default=V('*', safe=True)

)

category = StringParam(
"set this param to filter cats by breed (many values => OR)"
many=True,
solr_field='category'
default=V('*', safe=True),
op=operator.or_,

)

def list(self, params, meta, **kwargs):
return list(solr.search(params['text'] & params['category']))

Serializers and fields

The purpose of serializers and fields is to describe how structured is data that your API resources can return and accept.
They together describe what we could call a “resource representation”.

They also helps binding this resource representation with internal objects that you use in your application no matter
what you have there - dicts, native, class instances, ORM objects, documents, whatever. There is only one requirement:
there must be a way to represent them as a set of independent fields and their values. In other words: dictionaries.

Example of simple serializer:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
species = RawField("non normalized cat species")
age = IntField("cat age in years")
height = FloatField("cat height in cm")

Serializers are intended to be used with generic resources provided by graceful.resources.generic module
so only handlers for retrieving, updating, creating etc. of objects from validated data is needed:

Functionally equivalent example using generic resources:

from graceful.resources.generic import RetrieveUpdateAPI
from graceful.serializers import BaseSerializer
from graceful.fields import RawField, FloatField

class Cat(object):
def __init__(self, name, height):

self.name = name
self.height = height

class CatSerializer(BaseSerializer):
name = RawField("name of a cat")
height = FloatField("height in cm")

class CatResource(RetrieveUpdateAPI):
serializer = CatSerializer()

32 Chapter 5. Contents

graceful Documentation, Release 0.5.0

def retrieve(self, params, meta, **kwargs):
return Cat('molly', 30)

def update(self, params, meta, validated, **kwargs):
return Cat(**validated)

Anyway serializers can be used outside of generic resources but some additional work need to be done then:

import falcon

from graceful.resources.base import BaseResource

class CatResource(BaseResource):
serializer = CatSerializer()

def on_get(self, req, resp, **kwargs):
this in probably should be read from storage
cat = Cat('molly', 30)

self.make_body(
req, resp,
meta={},
content=self.serializer.to_representation(cat),

)

def on_put(self, req, resp, **kwargs)
validated = self.require_validated(req)
updated_cat = Cat(**validated)

self.make_body(
req, resp,
meta={},
may be nothing or again representation of new cat
content=self.serializer.to_representation(new_cat),

)

req.status = falcon.HTTP_CREATED

Field arguments

All field classes accept this set of arguments:

• details (str, required): verbose description of field.

• label (str, optional): human readable label for this field (it will be used for describing resource on OPTIONS
requests).

Note that it is recomended to use field names that are self-explanatory intead of relying on param labels.

• source (str, optional): name of internal object key/attribute that will be passed to field’s on
.to_representation(value) call. Special '*' value is allowed that will pass whole object to field
when making representation. If not set then default source will be a field name used as a serializer’s attribute.

• validators (list, optional): list of validator callables.

• many (bool, optional): set to True if field is in fact a list of given type objects

• read_only (bool): True if field is read-only and cannot be set/modified via POST, PUT, or PATCH requests.

5.2. Graceful guide 33

graceful Documentation, Release 0.5.0

• write_only (bool): True if field is write-only and cannot be retrieved via GET requests.

Note: source='*' is in fact a dirty workaround and will not work well on validation when new object instances
needs to be created/updated using POST/PUT requests. This works quite well with simple retrieve/list type resources
but in more sophisticated cases it is better to use custom object properties as sources to encapsulate such fields.

Field validation

Additional validation of field value can be added to each field as a list of callables. Any callable that accepts
single argument can be a validator but in order to provide correct HTTP responses each validator shoud raise
graceful.errors.ValidationError exception on validation call.

Note: Concept of validation for fields is understood here as a process of checking if data of valid type (successfully
parsed/processed by .from_representation handler) does meet some other constraints (lenght, bounds, unique,
etc).

Example of simple validator usage:

from graceful.errors import ValidationError
from graceful.serializers import BaseSerializer
from graceful.fields import FloatField

def tiny_validator(value):
if value > 20.0:

raise ValidationError

class TinyCats(BaseSerializer):
""" This resource accepts only cats that has height <= 20 cm """
height = FloatField("cat height", validators=[tiny_validator])

graceful provides some small set of predefined validator helpers in graceful.validators module.

Resource validation

In most cases field level validation is all that you need but sometimes you need to perfom obejct level validation that
needs to access multiple fields that are already deserialized and validated. Suggested way to do this in graceful is
to override serializer’s .validate() method and raise graceful.errors.ValidationError when your
validation fails. This exception will be then automatically translated to HTTP Bad Request response on resource-level
handlers. Here is example:

class DrinkSerializer():
alcohol = StringField("main ingredient", required=True)
mixed_with = StringField("what makes it tasty", required=True)

def validate(self, object_dict, partial=False):
note: always make sure to call super `validate()`
so whole validation of fields works as expected
super().validate(object_dict, partial)

here is a place for your own validation
if (

34 Chapter 5. Contents

graceful Documentation, Release 0.5.0

object_dict['alcohol'] == 'whisky' and
object_dict['mixed_with'] == 'cola'

):
raise ValidationError("bartender refused!')

Custom fields

Custom field types can be created by subclassing of BaseField class and implementing of two method handlers:

• .from_representation(raw): returns internal data type from raw string provided in request

• .to_representation(data): returns representation of internal data type

Example of custom field that assumes that data in internal object is stored as a serialized JSON string that we would
like to (de)serialize:

import json

from graceful.fields import BaseField

class JSONField(BaseField):
def from_representation(raw):

return json.dumps(raw)

def to_representation(data):
return json.loads(data)

Authentication and authorization

Graceful offers very simple and extendable authentication and authorization mechanism. The main design principles
for authentication and authorization in graceful are:

• Authentication (identifying users) and authorization (restricting access to the endpoint) are separate processes
and because of that they should be declared separately.

• Available authentication schemes are gloabl and always the same for whole application.

• Different resources usually require different permissions so authorization is always defined on per-resource or
per-method level.

• Authentication and authorization layers communicate only through request context (the req.context at-
tribute).

Thanks to these principles we are able to keep auth implementation very simple and also allow both mechanisms to be
completely optional:

• You can replace the built-in authorization tools with your own custom middleware classes and hooks. You can
also implement authorization layer inside of the resource modification methods (list/create/retrieve/etc.).

• If your use case is very simple and successful authentication (user identification) allows for implicit access grant
you can use only the authentication_required decorator.

• If you want to move whole authentication layer outside of your application code (e.g. using specialized reverse
proxy) you can easily do that. The only thing you need to do is to create some middleware that will properly
modify your request context dictionary to include proper user object.

5.2. Graceful guide 35

graceful Documentation, Release 0.5.0

Authentication - identifying the users

In order to define authentication for your application you need to instantiate one or more of the built in authentication
middleware classes and configure falcon application to use them. For example:

api = application = falcon.API(middleware=[
authentication.XForwardedFor(),
authentication.Anonymous(),

])

If request made the by the user meets all the requirements that are specific to any authentication flow, the gener-
ated/retrieved user object will be included in request context under req.context['user'] key. If this context
variable exists it is a clear sign that request was succesfully authenticated.

If you use multiple different middleware classes only the first middleware that succeeded to identify the user will
be resolved. This allows for having fallback authentication mechanism like anonymous users or users identified by
remote address.

User objects and working with user storages

Most of authentication middleware classes provided in graceful require user_storage initializations argument.
This is the object that abstracts access to the authentication database. It should implement at least the get_user()
method:

from graceful.authentication import BaseUserStorage

class CustomUserStorage(BaseUserStorage):
def get_user(

self, identified_with, identifier,
req, resp, resource, uri_kwargs

):
...

Accepted get_user() method arguments are:

• identified_with (object): instance of the authentication middleware that provided the identifier value. It
allows to distinguish different types of user credentials.

• identifier (object): object that identifies the user. It is specific for every authentication middleware implemen-
tation. For some middlewares it can be a raw string value (e.g. token or API key).

• req (falcon.Request): the request object.

• resp (falcon.Response): the response object. resource (object): the resource object.

• uri_kwargs (dict): keyword arguments from the URI template.

If user entry exists in the storage (user can be identified) the method should return user object. This object usually is
just a simple Python dictionary. This object will be later included in the request context as req.context['user']
variable. If user cannot be found in the storage it means that his identifier is either fake or invalid. In such case this
method should always return None.

Note: Note that at this stage you should not verify any user permissions. If you can identify user but it is unpriviledged
client you should still return the user object. Actual permission checking is a responsibility of the authorization layer.
You should inlcude all user metadata that will be later required in the authorization process.

Graceful inlcudes a few useful concrete user storage implementations:

36 Chapter 5. Contents

graceful Documentation, Release 0.5.0

• KeyValueUserStorage: simple implementation of user storage using any key-value database client as a
storage backend.

• DummyUserStorage: a dummy user storage that will always return the configured default user. It is useful
only for testing purposes.

• IPRangeWhitelistStorage: user storage with IP range whitelist intended to be used exclusively with the
XForwardedFor authentication middleware.

Implictit authentication without user storages

Some built-in authentication implementations for graceful do not require any user storage to be defined in order to
work. These authentication schemes are provided in form of following middlewares:

• authentication.XForwardedFor: the user_storage argument is completely optional.

• authentication.Anonymous: does not support user_storage argument at all.

If XForwardedFor is used without any storage it will sucessfully identify every request. The resulting request
object will be syntetic user dictionary in following form:

{
'identified_with': <authenticator>,
'identifier': <user-address>

}

Where <authenticator> is the authentication middleware instance (here defaults to XForwardedFor)
and the indentity will be client’s address. Client address is either value of X-Forwarded-For header
or remote address taken directly from WSGI enviroment dictionary (only if middleware is configured with
remote_address_fallback=True).

In case of Anonymous the resulting user context variable will be always the same as the value of middleware’s user
initialization argument.

Both XForwardedFor (without user storage) and Anonymous are intended to be used only as authentication fall-
backs for applications that expect req.context['user'] variable to be always available. This can be useful for
applications that identify every user to track and throttle API usage on endpoints that do not require any authorization.

Custom authentication middleware

The easiest way to implement custom authentication middleware is by subclassing the
BaseAuthenticationMiddleware. The only method you need to implement is identify(). It has
access to following arguments: identify(self, req, resp, resource, uri_kwargs):

• req (falcon.Request): falcon request object. You can read headers and get arguments from it.

• resp (falcon.Response): falcon response object. Usually not accessed during authentication.

• resource (object): resource object that request is routed to. May be useful if you want to provide dynamic
realms.

• uri_kwags (dict): dictionary of keyword arguments from URI template.

Aditionally you can control further the behaviour of authentication middleware using following class attributes:

• only_with_storage: if it is set to True, it will be impossible to initialize the middleware without
user_storage argument.

• challenge: returns the challenge string that will be inlcuded in WWW-Authenticate header on unautho-
rized request responses. This has effect only in resources protected with authentication_required.

5.2. Graceful guide 37

graceful Documentation, Release 0.5.0

Authorization - restricting access to the endpoint

The recommended way to implement authorization in graceful is through falcon hooks that can be applied to whole
resources and HTTP method handlers:

import falcon

from graceful.resources.generic import ListAPI

falcon.before(my_authorization_hook)
class MyListResource(ListAPI):

...

@falcon.before(my_other_authorization_hook)
def on_post(self, *args, **kwargs)

return super().on_post()

Authorization hooks depend solely on user context stored under req.context['user']. The usual authorization
hook implementation does two things:

• Check if the 'user' variable is available in req.context dictionary. If it isn’t then raise the
falcon.HTTPForbidden exception.

• Verify user object content (e.g. check his group) and raise the falcon.HTTPForbidden exception if does
not meet specific requirements.

Example of customizable authorization hook implementation that requires specific user group to be assigned could be
as follows:

import falcon

def group_required(user_group):

@falcon.before
def authorization_hook(req, resp, resource, uri_kwargs)

try:
user = req.context['user']

except KeyError:
raise falcon.HTTPForbidden(

"Forbidden",
"Could not identify the user!"

)

if user_group not in user.get('groups', set()):
raise falcon.HTTPForbidden(

"Forbidden",
"'{}' group required!".format(user_group)

)

Depending on your application design and complexity you will need different authorization handling. The way how
you grant/deny access also depends highly on the structure of your user objects and the preferred user storage. This is
why graceful provides only one basic authorization utility - the authentication_required decorator.

The authentication_required decorator ensures that request successfully passed authentication. If none of
the authentication middlewares succeeded to identify the user it will raise falcon.HTTPUnauthorized exception
and include list of available authentication challenges in the WWW-Authenticate response header. If you use this
decorator you don’t need to check for req.context['user'] existence in your custom authorization hooks (still,
it is a good practice to do so).

38 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Example usage is:

from graceful import authorization
from graceful.resources.generic import ListAPI

from myapp.auth import group_required

@authentication_required
@group_required("admin")
class MyListResource(ListAPI):

...

@falcon.before(my_other_authorization_hook)
def on_post(self, *args, **kwargs)

return super().on_post()

Heterogenous authentication

Graceful does not allow you to specify unique per-resource or per-method authentication schemes. This allows for
easier implementation but may not cover every use case possible.

If you need to restrict some authentication methods to specific resources (e.g. some custom auth only for internal use)
the best way is to handle this through separate application deployments.

Practical example – authentication with redis backend

Let’s assume we want to build simple REST API application supporting two authentication schemes:

• Token access authentication with Authorization: Token HTTP header

• Basic access authentication with Authorization: Basic HTTP header as specified by RFC 7617.

As a user database we will use KeyValueUserStorage storage class which is compatible with any key-value
database client that provides two simple methods:

• set(key,value): set key value in the storage. Both key and value should be strings.

• get(key): get key value from the storage. Both key and return value should be string.

First step is to create a key-value store client user storage intance that will be used by both authentication middlewares.
With redis and KeyValueUserStorage this is very simple:

from redis import StrictRedis as Redis
from graceful.authentication import KeyValueUserStorage

auth_storage = KeyValueUserStorage(Redis())

This storage can be used by many different authentication middlewares at the same time. It will properly prefix every
Redis key with middleware name to make sure different types of user entries do not collide with each other.

The only problem is that default implementation of KeyValueUserStorage.hash_identifier(identified_with,identifier)
method expects that identifier argument is a single string argument. The Basic authentication middleware
generates identifiers in form of (username,password) two-tuples. Fortunately you don’t need to use subclassing
in order to override this method behavior. The hash_identifier method is a single-dispatch generic function so
you can easily create custom handlers for specific authentication middleware types.

We definitely don’t want to store user passwords in plain text. Let’s register simple hash_identifier handler for
Basic access authentication that will properly prepare password hash using SHA1 algorithm:

5.2. Graceful guide 39

https://tools.ietf.org/html/rfc7616
https://docs.python.org/3/library/functools.html#functools.singledispatch

graceful Documentation, Release 0.5.0

from hashlib import sha1

from graceful.authentication import Basic

@auth_storage.hash_identifier.register(Basic)
def _(identified_with, identifier):

return ":".join((
identifier[0],
hashlib.sha1(identifier[1].encode()).hexdigest()

))

Default hash_identifier leaves single-string identifiers untouched so it may be a good idea to hash token iden-
tifiers in similar fashion too:

@auth_storage.hash_identifier.register(Token)
def _(identified_with, identifier):

return hashlib.sha1(identifier[1].encode()).hexdigest()

Note: Really secure password verification mechanism would require proper time-consuming hashing algorithm that
would prevent application from brute-force and timing attacks. Anyway, for real end-user applications you would
probably use a session cookie for authentication rather than basic access authentication. For such case simple SHA1
hashing may not be the best solution. Still, basic access authentication is a simple alternative to custom authentication
headers and/or GET parameters when communicating in server-to-server fashion over the secure channel.

Our authentication setup is almost finished. The last things to do is to initialize authentication middlewares and setup a
very basic authorization to API resources. Following is the code for a very small application that protects its resources
with Token and Basic authentication middlewares:

import hashlib

from redis import StrictRedis as Redis
import falcon

from graceful.resources.generic import Resource
from graceful.authentication import KeyValueUserStorage, Token, Basic
from graceful.authorization import authentication_required

@authentication_required
class Me(Resource, with_context=True):

def retrieve(self, params, meta, context):
return context.get('user')

auth_storage = KeyValueUserStorage(Redis())

@auth_storage.hash_identifier.register(Basic)
def _(identified_with, identifier):

return ":".join((
identifier[0],
hashlib.sha1(identifier[1].encode()).hexdigest()

))

40 Chapter 5. Contents

https://en.wikipedia.org/wiki/Cryptographic_hash_function#Password_verification

graceful Documentation, Release 0.5.0

@auth_storage.hash_identifier.register(Token)
def _(identified_with, identifier):

return hashlib.sha1(identifier[1].encode()).hexdigest()

api = application = falcon.API(
middleware=[

Token(auth_storage),
Basic(auth_storage),

]
)

api.add_route('/me/', Me())

Now you can easily create new user entries using Pyhton console:

>>> from auth_app import auth_storage, Token, Basic
>>> auth_storage.register(Token(auth_storage), 'mytoken', {"user": "me with token"})
>>> auth_storage.register(Basic(auth_storage), ['myusername', 'mysecretpassword'], {
→˓"user": "me with password"})

... check if they are successfully saved in Redis:

$ redis-cli keys '*'
1) "users:Token:95cb0bfd2977c761298d9624e4b4d4c72a39974a"
2) "users:Basic:myusername:08cd923367890009657eab812753379bdb321eeb"

... and verify authentication using HTTP client (here with httpie):

$ http localhost:8000/me
HTTP/1.1 401 Unauthorized
Connection: close
Date: Thu, 23 Mar 2017 16:09:55 GMT
Server: gunicorn/19.6.0
content-length: 91
content-type: application/json
vary: Accept
www-authenticate: Token, Basic realm=api

{
"description": "This resource requires authentication",
"title": "Unauthorized"

}

$ http localhost:8000/me --auth myusername:mysecretpassword
HTTP/1.1 200 OK
Connection: close
Date: Thu, 23 Mar 2017 16:08:53 GMT
Server: gunicorn/19.6.0
content-length: 76
content-type: application/json

{
"content": {

"user": "me with password"
},
"meta": {

"params": {
"indent": 0

5.2. Graceful guide 41

graceful Documentation, Release 0.5.0

}
}

}

$ http localhost:8000/me 'Authorization:Token mytoken'
HTTP/1.1 200 OK
Connection: close
Date: Thu, 23 Mar 2017 16:09:39 GMT
Server: gunicorn/19.6.0
content-length: 73
content-type: application/json

{
"content": {

"user": "me with token"
},
"meta": {

"params": {
"indent": 0

}
}

}

Working with resources

This section of documentation covers various topics related with general API design handling specific request work-
flows like:

• Dealing with falcon context object.

• Using hooks and middleware classes.

Dealing with falcon context objects

Falcon’s Request object allows you to store some additional context data under Request.context attribute in
the form of Python dictionary. This dictionary is available in basic falcon HTTP method handlers like:

• on_get(req,resp,**kwargs)

• on_post(req,resp,**kwargs)

• on_put(req,resp,**kwargs)

• on_patch(req,resp,**kwargs)

• on_options(req,resp,**kwargs)

• ...

Graceful has slighly different design principles. If you use the generic resource classes (i.e.
RetrieveAPI, RetrieveUpdateAPI, ListAPI and so on) or the BaseResource class with
graceful.resources.mixins you will usually end up using only the simple resource modification han-
dlers:

• list(params,meta,**kwargs)

• retrieve(params,meta,**kwargs)

• create(params,meta,validated,**kwargs)

42 Chapter 5. Contents

graceful Documentation, Release 0.5.0

• ...

These handlers do not have the direct access to the request and response objects (the req and resp arguments). In
most cases this is not a problem. Access to the request object is required usually in order to retrieve client repre-
sentation of the resource, GET parameters, and headers. These things should be completely covered with the proper
usage of parameter classes and serializer classes. Direct access to the response object is also rarely required. This is
because the serializers are able to encode resource representation to the response body with negotiated content-type. If
you require additional response access (e.g. to add some custom response headers), the best way to do that is usually
through falcon middleware classes or hooks.

Anyway, in many cases you may want to work with some unique per-request context. Typical use cases for that are:

• Providing authentication/authorization objects using middleware classes.

• Providing session/client objects that abstract database connection and allow handling transactions with auto-
mated commits/rollbacks on finished requests.

Starting from graceful 0.3.0 you can define your resource class as a context-aware using with_context=True
keyword argument. This will change the set of arguments provided to resource manipulation handlers in the generic
API classes:

from graceful.resources.generic import ListAPI
from graceful.serializers import BaseSerializer

class MyListResource(ListAPI, with_context=True)
serializer = BaseSerializer()

def list(self, params, meta, context, **kwargs)
return {}

And in every non-generic resource class that uses mixins:

from graceful.resources.base import BaseResource
from graceful.resources.mixins import ListMixin

class MyListResource(ListMixin, BaseResource, with_context=True):

def list(self, params, meta, context, **kwargs):
pass

The context argument is exactly the same object as Request.context that you have access to in your falcon
hooks or middleware classes.

Note: Future and backwards compatibility of context-aware resource classes

Every resource class in graceful 0.x is not context-aware by default. Starting from 0.3.0 the context-awareness of
the resource should be explicitly enabled/disabled using the with_context keyword argument in class definition.
Not doing so will result in FutureWarning generated on resource class instantiation.

Starting from 1.0.0 all resource classes will be context-aware by default and the with_context keyword argu-
ment will become deprecated. The future of non-context-aware resources is still undecided but it is very likely that
they will be removed completely in 1.x branch.

Content types

graceful currently talks only JSON. If you want to support other content-types then the only way is to
override BaseResource.make_body(), BaseResource.require_representation() and optionally

5.2. Graceful guide 43

graceful Documentation, Release 0.5.0

BaseResource.on_options() etc. methods. Suggested way would be do create a class mixin that can be
added to every of your resources but ideally it would be great if someone contributed code that adds reasonable con-
tent negotiation and pluggable content-type serialization.

Documenting your API

Providing clear and readable documentation is very important topic for every API creator. Graceful does not come
with built-in autodoc feature yet, but is built in a way that allows you to create your documentation very easily.

Every important building block that creates your API definition in graceful (resource, parameter, and field classes)
comes with special describe() method that returns dictionary of all important metadata necessary to create clear
and readable documentation. Additionally generic API resources (RetrieveAPI, ListAPI, ListCreateAPI
and so on) are aware of their associated serializers to ease the whole process of documenting your service.

Using self-descriptive resources

The easiest way do access API metadata programatically is to issue OPTIONS request to the API endpoint of choice.
Example how to do that was already presented in project’s README file and main documentation page. Using this
built-in capability of graceful’s resources it should be definitely easy to populate your HTML/JS based documentation
portal with API metadata.

This is the preferred way to construct documentation portals for your API. It has many advantages compared to
documentation self-hosted within the same application as your API service. Just to name a few:

• Documentation deployment is decoupled from deployment of your API service. Documentation portal can be
stored in completely different project and does not even need to be hosted on the same machines as your API.

• Documentation portal may require completely different requirements that could be in conflict with you.

• API are often secured on different layers and using different authentication and authorization schemes. But
documentations for such APIs are very often left open. If you keep them both separated it will allow you to
reduce complexity of both projects.

• Changes to documentation layout and aesthetics do not require new deployments of whole service. This makes
your operations more robust.

The popular Swagger project is built with similar idea in mind. If you like this project and are already familiar with it
you should be able to easily translate API metadata returned by graceful to format that is accepted by Swagger.

Self-hosted documentation

Decoupling documentation portal from your API service is in many cases the most reliable option. Anyway, there are
many use cases where such approach migth be simply incovenient. For instance, if you distribute your project as a
downloadable package (e.g. through PyPI) you may want to make it easily accessible for new users without the need
of bootstrapping mutliple processes and services.

In such cases it might be reasonable to generate documentation in format that is convenient to the user by the same
process that serves your API requests. The same features that allow you to easily access API metadata via OPTIONS
requests allow you to introspect resources within your application process and populate any kind of documents.

The most obvious approach is to create some HTML templates, fill them with data retrieved from describe()
method of each resource and serve them directly to the user via HTTP.

Graceful can’t do all of that out of the box (maybe in future) but general process is very simple and does not require a
lot of code. Additionally, you have full control over what tools you want to use to build documentation.

44 Chapter 5. Contents

https://github.com/swistakm/graceful
http://swagger.io

graceful Documentation, Release 0.5.0

In this section we will show how it could be done using some popular tools like Jinja and python-hoedown but
no one forces you to use specific template language or text markup. Choose anything you like and anything you are
comfortable with. All code that is featured in this guide is also available in the demo directory in the project repository.

Serving HTML and using Jinja templates in falcon

Graceful isn’t a full-flegded framework like Django or Flask. It is only a toolkit that allows you to define REST APIs
in a clean and convenient way. Only that and nothing more.

Neither Graceful nor Falcon have built-in support for generating HTML responses because it is not their main use
case. But serving HTML isn’t by any means different from responding with JSON, XML, YAML, or any other
content type. What you need to do is to put your HTML to the body section of your response and set proper value of
the Content-Type header. Here is simple example of falcon resource that serves some html:

import falcon

class HtmlResource:
def on_get(self, req, resp):

resp.body = """
<!DOCTYPE html>
<html>
<head><title>Hello World!</title></head>
<body>
<h1>Hello World!</h1>
</body>
</html>
"""
resp.status = falcon.HTTP_200
resp.content_type = 'text/html'

Of cource no one wants to generate documentation relying solely on str.format(). One useful feature that many
web frameworks offer is some kind of templating engine that allows you to easily format different kinds of documents.
If you want to build beautiful documentation you will eventually need a one. For the purpose of this example we will
use Jinja that is usually a very good choice and is very easy to start with.

In our documentation pages, we don’t want to support any query string parameters or define CRUD semenatics. So
we don’t need any of Graceful’s generic classes, parameters of serializers. Let’s build simple falcon resource that
will allow us to respond with templated HTML response that may be populated with some predefined (or dynamic)
context:

from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

class Templated(object):
template_name = None

def __init__(self, template_name=None, context=None):
note: this is to ensure that template_name can be set as
class level attribute in derrived class
self.template_name = template_name or self.template_name
self.context = context or {}

def render(self, req, resp):
template = env.get_template(self.template_name)

5.2. Graceful guide 45

http://jinja.pocoo.org
https://github.com/hhatto/python-hoedown
https://github.com/swistakm/graceful/tree/master/demo

graceful Documentation, Release 0.5.0

return template.render(**self.context)

def on_get(self, req, resp):
resp.body = self.render(req, resp)
resp.content_type = 'text/html'

Assuming we have index.html Jinja template stored in the templates directory we can start to serve your first
HTML from falcon by adding Templated resource instance to your app router:

api.add_route("/", Templated('index.html'))

Populating templates with resources metadata

Once you are able to generate HTML pages from template it’s time to populate them with resource metadata. Every
resource class instance in Graceful provides describe() method that returns dictionary that contains metadata with
information about it’s resource structure (fields), accepted HTTP methods, query string parameters, and so on. The
general structure is as follows:

{
"details": ... # => Resource class docstring
"fields": { # => Description of resource representation fields

"<field_name>": {
"details": ..., # => Field definition 'details' string
"label": ..., # => Field definition 'label' string
"spec": ..., # => Additional specification tuple associated

with specific field class. It is usualy
standard name (e.g. ISO 639-2), and URL to its
official documentation

"type": ..., # => Generic type name like 'string', 'bool', etc.
},
...

},
"methods": [...], # => List of accepted HTTP methods (uppercase)
"name": "CatList", # => Resource class name
"params": { # => Description of accepted query string params

"<param_name>": {
"default": ..., # => Default parameter value
"details": ..., # => Param definition 'details' string
"label": ...,
"required": ..., # => Flag indicating if parameter is requires (bool)
"spec": ..., # => Additional specification tuple associated

with specific param class. It is usualy
standard name (e.g. ISO 639-2), and URL to its
official documentation

"type": "..." # => Generic type name like 'string', 'bool', etc.
},

},
"path": ..., # => URI leading to resource (only available

on OPTIONS requests)
"type": ..., # => General type of resource representation form.

It may be "object" for single resource
representation or "list" for endpoints that
return list of resource representations.

}

Knowing that resource descriptions have well defined and consistent structure we can add them to predefined context

46 Chapter 5. Contents

graceful Documentation, Release 0.5.0

of our Templated resource. Because all API resources are always associated with their URIs (which are unique per
resource class), it is a good approach to group descriptions by their URI templates from falcon router.

Let’s assume we want to document Cats API example presented in main documentation page. Here is falcon’s router
configuration that adds Cats API resources and additional templated documentation resource that can render our ser-
vice metadata in human readable form:

api.add_route("/v1/cats/{cat_id}", V1.Cat())
api.add_route("/v1/cats/", V1.CatList())
api.add_route("/", Templated('index.html', {

'endpoints': {
"/v1/cats/": V1.CatList().describe(),
"/v1/cats/{cat_id}": V1.Cat().describe(),

}
}))

For APIs that contain a lot of multiple resources it is always better to follow “don’t repeat yourself” principle:

api = application = falcon.API()

endpoints = {
"/v1/cats/{cat_id}": V1.Cat(),
"/v1/cats/": V1.CatList(),

}

for uri, endpoint in endpoints:
api.add_route(uri, endpoint)

api.add_route("/", Templated('index.html', {
'endpoints': {

uri: endpoint.describe()
for uri, endpoint
in endpoints.items()

}
}))

The last thing you need to do is to create a template that will be used to render your documentation. Here is a minimal
Jinja template for Cats API that provides general overview on the API structure with plain HTML and without any
fancy styling:

<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>Cats API</title>

</head>
<body>

<h1>Cats API documentation</h1>

<p> Welcome to Cats API documentation </p>

{% for uri, endpoint in endpoints.items() %}
<h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

<p>
Accepted methods:
<code>{{ endpoint.methods }}</code>

</p>

5.2. Graceful guide 47

graceful Documentation, Release 0.5.0

<p> {{ endpoint.details }}</p>

<h3>Accepted params</h3>
{% if endpoint.params %}

{% for name, param in endpoint.params.items() %}
{{ name }} ({{ param.type }}): {{ param.details }}
{% endfor %}

{% endif %}

<h3>Accepted fields</h3>
{% if endpoint.fields %}

{% for name, field in endpoint.fields.items() %}
{{ name }} ({{ field.type }}): {{ field.details }}
{% endfor %}

{% endif %}

{% endfor %}
</body>
</html>

Formatting resource class docstrings

Building good service documentation is not an easy task but Graceful tries to make it at least a bit easier by providing
you with some tools to introspect your service. Thanks to this you can take resource metadata and convert it to human
readable form.

But your work does not end on providing the list of acceptable fields and parameters. Very often you may need to
provide some more information about specific resource type like specific limits, usage example or rationale behind
your design decisions. The best place to do that is the resource docstring that is always included in the result of
describe() method call. This is very convenient way of managing even large parts of your documentation.

But when docstrings get longer and longer it is good idea to add a bit more structure to them instead of keeping them
unformatted. A good idea is to use some lightweight markup language that is easy-to-read in plain text (so it is easy
to edit by developer) but provides you with enough rendering capabilities to make your documentation look good for
actual API user. A very popular choice for a lightweight markup is Markdown.

It seems that everyone loves Markdown, but apparently there is no Markdown parser (at least availaible in Python)
that would not suck terribly in some of its aspects. Anyway, Python binding to hoedown (that is fork of sundown, that
is fork of upskirt, that is now a libsoldout...) has acceptable quality and can be successfully used for that purpose.

The best news is that it is insanely easy to integrate it with Jinja. The only thing you need to do is to create new
template filter that will allow you to convert any string to HTML inside of you template. It could be something like
following:

import hoedown
from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

md = hoedown.Markdown(
CustomRenderer(),

48 Chapter 5. Contents

https://en.wikipedia.org/wiki/Markdown
https://github.com/hoedown/hoedown

graceful Documentation, Release 0.5.0

extensions=hoedown.EXT_FENCED_CODE | hoedown.EXT_HIGHLIGHT
)

def markdown_filter(data):
return md.render(data)

env.filters['markdown'] = markdown_filter

With such definition you can use your new filter anywhere in template where you expect string to be multiline Mark-
down markup:

{% for uri, endpoint in endpoints.items() %}
<h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

<p> {{ endpoint.details|markdown }}</p>
{% endfor %}

You can also use that technique to format multiline strings supplied as details arguments to fields and parameters
definitions. Graceful will properly strip excesive leading whitespaces from them so you can easily use any indentation-
sensitive markup language (like reStructuredText).

API reference

graceful package

graceful.fields module

class graceful.fields.BaseField(details, label=None, source=None, validators=None,
many=False, read_only=False, write_only=False)

Base field class for subclassing.

To create new field type subclass BaseField and implement following methods:

•from_representation(): converts representation (used in request/response body) to internal value.

•to_representation(): converts internal value to representation that will be used in response body.

Parameters

• details (str) – human readable description of field (it will be used for describing resource on
OPTIONS requests).

• label (str) – human readable label of a field (it will be used for describing resource on
OPTIONS requests).

Note: it is recommended to use field names that are self-explanatory intead of relying on
field labels.

• source (str) – name of internal object key/attribute that will be passed to field on
.to_representation() call. Special '*' value is allowed that will pass whole object
to field when making representation. If not set then default source will be a field name used
as a serializer’s attribute.

• validators (list) – list of validator callables.

• many (bool) – set to True if field is in fact a list of given type objects.

5.3. API reference 49

graceful Documentation, Release 0.5.0

• read_only (bool) – True if field is read-only and cannot be set/modified via POST, PUT, or
PATCH requests.

• write_only (bool) – True if field is write-only and cannot be retrieved via GET requests.

New in version 0.5.0.

Example:

class BoolField(BaseField):
def from_representation(self, data):

if data in {'true', 'True', 'yes', '1', 'Y'}:
return True:

elif data in {'false', 'False', 'no', '0', 'N'}:
return False:

else:
raise ValueError(

"{data} is not valid boolean field".format(
data=data

)
)

def to_representation(self, value):
return ["True", "False"][value]

describe(**kwargs)
Describe this field instance for purpose of self-documentation.

Parameters kwargs (dict) – dictionary of additional description items for extending default
description

Returns dict – dictionary of description items

Suggested way for overriding description fields or extending it with additional items is calling super class
method with new/overriden fields passed as keyword arguments like following:

class DummyField(BaseField):
def description(self, **kwargs):

super().describe(is_dummy=True, **kwargs)

from_representation(data)
Convert representation value to internal value.

Note: This is method handler stub and should be redifined in the BaseField subclasses.

spec = None

to_representation(value)
Convert representation value to internal value.

Note: This is method handler stub and should be redifined in the BaseField subclasses.

type = None

validate(value)
Perform validation on value by running all field validators.

50 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Single validator is a callable that accepts one positional argument and raises ValidationError when
validation fails.

Error message included in exception will be included in http error response

Parameters value – internal value to validate

Returns None

Note: Concept of validation for fields is understood here as a process of checking if data of
valid type (successfully parsed/processed by .from_representation handler) does meet some
other constraints (lenght, bounds, uniqueness, etc). So this method is always called with result of
.from_representation() passed as its argument.

class graceful.fields.BoolField(details, representations=None, **kwargs)
Represents boolean type of field.

By default accepts a wide range of incoming True/False representations:

•False: ['False','false','FALSE','F','f','0',0,0.0,False]

•True: ['True','true','TRUE','T','t','1',1,True]

By default, the outup representations of internal object’s value are Python’s False/True values that will be later
serialized to form that is native for content-type of use.

This behavior can be changed using representations field argument. Note that when using
representations parameter you need to make strict decision and there is no ability to accept multiple
options for true/false representations. Anyway, it is reccomended approach to strictly define these values.

Parameters representations (tuple) – two-tuple with representations for (False, True) values, that
will be used instead of default values

from_representation(data)
Convert representation value to bool if it has expected form.

to_representation(value)
Convert internal boolean value to one of defined representations.

type = ‘bool’

class graceful.fields.FloatField(details, max_value=None, min_value=None, **kwargs)
Represents float type of field.

Accepts both floats and strings as an incoming float number representation and always returns float as a repre-
sentation of internal objects’s value that will be later serialized to form that is native for content-type of use.

This field accepts optional arguments that simply add new max and min value validation.

Parameters

• max_value (int) – optional max value for validation

• min_value (int) – optional min value for validation

from_representation(data)
Convert representation value to float.

to_representation(value)
Convert internal value to float.

type = ‘float’

5.3. API reference 51

graceful Documentation, Release 0.5.0

class graceful.fields.IntField(details, max_value=None, min_value=None, **kwargs)
Represents integer type of field.

Field of this type accepts both integers and strings as an incoming integer representation and always returns int
as a representation of internal objects’s value that will be later serialized to form that is native for content-type
of use.

This field accepts optional arguments that simply add new max and min value validation.

Parameters

• max_value (int) – optional max value for validation

• min_value (int) – optional min value for validation

from_representation(data)
Convert representation value to int.

to_representation(value)
Convert internal value to int.

type = ‘int’

class graceful.fields.RawField(details, label=None, source=None, validators=None, many=False,
read_only=False, write_only=False)

Represents raw field subtype.

Any value from resource object will be returned as is without any conversion and no control over serialized
value type is provided. Can be used only with very simple data types like int, float, str etc. but can eventually
cause problems if value provided in representation has type that is not accepted in application.

Effect of using this can differ between various content-types.

from_representation(data)
Return representation value as-is (note: content-type dependent).

to_representation(value)
Return internal value as-is (note: content-type dependent).

type = ‘raw’

class graceful.fields.StringField(details, label=None, source=None, validators=None,
many=False, read_only=False, write_only=False)

Represents string field subtype without any extensive validation.

from_representation(data)
Convert representation value to str.

to_representation(value)
Convert representation value to str.

type = ‘string’

graceful.parameters module

class graceful.parameters.Base64EncodedParam(details, label=None, required=False, de-
fault=None, many=False, validators=None)

Describes string parameter with value encoded using Base64 encoding.

spec = (‘RFC-4648 Section 4’, ‘https://tools.ietf.org/html/rfc4648#section-4’)

value(raw_value)
Decode param with Base64.

52 Chapter 5. Contents

graceful Documentation, Release 0.5.0

class graceful.parameters.BaseParam(details, label=None, required=False, default=None,
many=False, validators=None)

Base parameter class for subclassing.

To create new parameter type subclass BaseParam and implement .value() method handler.

Parameters

• details (str) – verbose description of parameter. Should contain all information that may be
important to your API user and will be used for describing resource on OPTIONS requests
and .describe() call.

• label (str) – human readable label for this parameter (it will be used for describing resource
on OPTIONS requests).

Note that it is recomended to use parameter names that are self-explanatory intead of relying
on param labels.

• required (bool) – if set to True then all GET, POST, PUT, PATCH and DELETE requests
will return 400 Bad Request response if query param is not provided. Defaults to
False.

• default (str) – set default value for param if it is not provided in request as query parameter.
This MUST be a raw string value that will be then parsed by .value() handler.

If default is set and required is True it will raise ValueError as having required
parameters with default value has no sense.

• many (str) – set to True if multiple occurences of this parameter can be included in query
string, as a result values for this parameter will be always included as a list in params dict.
Defaults to False. Instead of list you can use any list-compatible data type by overriding
the container class attribute. See: Custom containers.

New in version 0.1.0.

• validators (list) – list of validator callables.

New in version 0.2.0.

Note: If many=False and client inlcudes multiple values for this parameter in query string then only one of
those values will be returned, and it is undefined which one.

Example:

class BoolParam(BaseParam):
def value(self, data):

if data in {'true', 'True', 'yes', '1', 'Y'}:
return True

elif data in {'false', 'False', 'no', '0', 'N'}:
return False

else:
raise ValueError(

"{data} is not valid boolean field".format(
data=data

)
)

container
alias of list

5.3. API reference 53

graceful Documentation, Release 0.5.0

describe(**kwargs)
Describe this parameter instance for purpose of self-documentation.

Parameters kwargs (dict) – dictionary of additional description items for extending default
description

Returns dict – dictionary of description items

Suggested way for overriding description fields or extending it with additional items is calling super class
method with new/overriden fields passed as keyword arguments like following:

class DummyParam(BaseParam):
def description(self, **kwargs):

super().describe(is_dummy=True, **kwargs)

spec = None

type = None

validated_value(raw_value)
Return parsed parameter value and run validation handlers.

Error message included in exception will be included in http error response

Parameters value – raw parameter value to parse validate

Returns None

Note: Concept of validation for params is understood here as a process of checking if data of valid type
(successfully parsed/processed by .value() handler) does meet some other constraints (lenght, bounds,
uniqueness, etc.). It will internally call its value() handler.

value(raw_value)
Raw value deserialization method handler.

Parameters raw_value (str) – raw value from GET parameters

class graceful.parameters.BoolParam(details, label=None, required=False, default=None,
many=False, validators=None)

Describes parameter with value expressed as bool.

New in version 0.2.0.

Accepted string values for boolean parameters are as follows:

•False: ['True','true','TRUE','T','t','1'}

•True: ['False','false','FALSE','F','f','0','0.0']

In case raw parameter value does not match any of these strings the value() method will raise ValueError
method.

type = ‘bool’

value(raw_value)
Decode param as bool value.

class graceful.parameters.DecimalParam(details, label=None, required=False, default=None,
many=False, validators=None)

Describes parameter with value expressed as decimal number.

type = ‘decimal’

54 Chapter 5. Contents

graceful Documentation, Release 0.5.0

value(raw_value)
Decode param as decimal value.

class graceful.parameters.FloatParam(details, label=None, required=False, default=None,
many=False, validators=None)

Describes parameter with value expressed as float number.

type = ‘float’

value(raw_value)
Decode param as float value.

class graceful.parameters.IntParam(details, label=None, required=False, default=None,
many=False, validators=None)

Describes parameter with value expressed as integer number.

type = ‘integer’

value(raw_value)
Decode param as integer value.

class graceful.parameters.StringParam(details, label=None, required=False, default=None,
many=False, validators=None)

Describes parameter that will always be returned as-is (string).

Additional validation can be added to param instance using validators argument during initialization:

from graceful.parameters import StringParam
from graceful.validators import match_validator
from graceful.resources.generic import Resource

class ExampleResource(Resource):
word = StringParam(

'one "word" parameter',
validators=[match_validator('\w+')],

)

type = ‘string’

value(raw_value)
Return param value as-is (str).

graceful.serializers module

class graceful.serializers.BaseSerializer
Base serializer class for describing internal object serialization.

Example:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
species = RawField("non normalized cat species")
age = IntField("cat age in years")
height = FloatField("cat height in cm")

describe()
Describe all serialized fields.

5.3. API reference 55

graceful Documentation, Release 0.5.0

It returns dictionary of all fields description defined for this serializer using their own describe()
methods with respect to order in which they are defined as class attributes.

Returns OrderedDict – serializer description

fields
Return dictionary of field definition objects of this serializer.

from_representation(representation)
Convert given representation dict into internal object.

Internal object is simply a dictionary of values with respect to field sources.

This does not check if all required fields exist or values are valid in terms of value validation (see:
BaseField.validate()) but still requires all of passed representation values to be well formed rep-
resentation (success call to field.from_representation).

In case of malformed representation it will run additional validation only to provide a full detailed excep-
tion about all that might be wrong with provided representation.

Parameters representation (dict) – dictionary with field representation values

Raises DeserializationError – when at least one representation field is not formed as
expected by field object. Information about additional forbidden/missing/invalid fields is
provided as well.

get_attribute(obj, attr)
Get attribute of given object instance.

Reason for existence of this method is the fact that ‘attribute’ can be also object’s key from if is a dict or
any other kind of mapping.

Note: it will return None if attribute key does not exist

Parameters obj (object) – internal object to retrieve data from

Returns internal object’s key value or attribute

set_attribute(obj, attr, value)
Set value of attribute in given object instance.

Reason for existence of this method is the fact that ‘attribute’ can be also a object’s key if it is a dict or any
other kind of mapping.

Parameters

• obj (object) – object instance to modify

• attr (str) – attribute (or key) to change

• value – value to set

to_representation(obj)
Convert given internal object instance into representation dict.

Representation dict may be later serialized to the content-type of choice in the resource HTTP method
handler.

This loops over all fields and retrieves source keys/attributes as field values with respect to optional field
sources and converts each one using field.to_representation() method.

Parameters obj (object) – internal object that needs to be represented

Returns dict – representation dictionary

56 Chapter 5. Contents

graceful Documentation, Release 0.5.0

validate(object_dict, partial=False)
Validate given internal object returned by to_representation().

Internal object is validated against missing/forbidden/invalid fields values using fields definitions defined
in serializer.

Parameters

• object_dict (dict) – internal object dictionart to perform to validate

• partial (bool) – if set to True then incomplete object_dict is accepter and will not raise
any exceptions when one of fields is missing

Raises DeserializationError

class graceful.serializers.MetaSerializer
Metaclass for handling serialization with field objects.

static __new__(mcs, name, bases, namespace)
Create new class object instance and alter its namespace.

classmethod __prepare__(mcs, name, bases, **kwargs)
Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict so _get_fields() method can construct fields storage that preserves the
same order of fields as defined in code.

Note: this is python3 thing and support for ordering of params in descriptions will not be backported to
python2 even if this framework will get python2 support.

graceful.authentication module

class graceful.authentication.Anonymous(user)
Dummy authentication middleware that authenticates every request.

It makes every every request authenticated with default value of anonymous user. This authentication middle-
ware may be used in order to simplify custom authorization code since it will ensure that every request context
will have the 'user' variable defined.

Note: This middleware will always add the default user to the request context if no other previous authentication
middleware resolved. So if this middleware is used it makes no sense to:

•Use the authentication_required decorator.

•Define any other authentication middleware after this one.

Parameters user – Default anonymous user object.

New in version 0.4.0.

challenge = None

identify(req, resp, resource, uri_kwargs)
Identify user with a dummy sentinel value.

only_with_storage = True

class graceful.authentication.BaseAuthenticationMiddleware(user_storage=None,
name=None)

Base class for all authentication middleware classes.

5.3. API reference 57

graceful Documentation, Release 0.5.0

Parameters

• user_storage (BaseUserStorage) – a storage object used to retrieve user object using their
identifier lookup.

• name (str) – custom name of the authentication middleware useful for handling custom user
storage backends. Defaults to middleware class name.

New in version 0.4.0.

challenge = None

identify(req, resp, resource, uri_kwargs)
Identify the user that made the request.

Parameters

• req (falcon.Request) – request object

• resp (falcon.Response) – response object

• resource (object) – resource object matched by falcon router

• uri_kwargs (dict) – additional keyword argument from uri template. For
falcon<1.0.0 this is always None

Returns object – a user object (preferably a dictionary).

only_with_storage = False

process_resource(req, resp, resource, uri_kwargs=None)
Process resource after routing to it.

This is basic falcon middleware handler.

Parameters

• req (falcon.Request) – request object

• resp (falcon.Response) – response object

• resource (object) – resource object matched by falcon router

• uri_kwargs (dict) – additional keyword argument from uri template. For
falcon<1.0.0 this is always None

try_storage(identifier, req, resp, resource, uri_kwargs)
Try to find user in configured user storage object.

Parameters identifier – User identifier.

Returns user object.

class graceful.authentication.BaseUserStorage
Base user storage class that defines required API for user storages.

All built-in graceful authentication middleware classes expect user storage to have compatible API. Custom
authentication middlewares do not need to use storages.

New in version 0.4.0.

classmethod __subclasshook__(klass)
Verify implicit class interface.

get_user(identified_with, identifier, req, resp, resource, uri_kwargs)
Get user from the storage.

Parameters

58 Chapter 5. Contents

graceful Documentation, Release 0.5.0

• identified_with (str) – instance of the authentication middleware that provided the
identifier value.

• identifier (str) – string that identifies the user (it is specific for every authentication mid-
dleware implementation).

• req (falcon.Request) – the request object.

• resp (falcon.Response) – the response object.

• resource (object) – the resource object.

• uri_kwargs (dict) – keyword arguments from the URI template.

Returns the deserialized user object. Preferably a dict but it is application-specific.

class graceful.authentication.Basic(user_storage=None, name=None, realm=’api’)
Authenticate user with Basic auth as specified by RFC 7617.

Token authentication takes form of Authorization header in the following form:

Authorization: Basic <credentials>

Whre <credentials> is base64 encoded username and password separated by single colon charactes (refer to
official RFC). Usernames must not contain colon characters!

If client fails to authenticate on protected endpoint the response will include following challenge:

WWW-Authenticate: Basic realm="<realm>"

Where <realm> is the value of configured authentication realm.

This middleware must be configured with user_storage that provides access to database of client API keys
and their identities. Additionally. the identifier received by user storage in the get_user() method is a
decoded <username>:<password> string. If you need to apply any hash function before hitting database
in your user storage handler, you should split it using followitg code:

username, _, password = identifier.partition(":")

Parameters

• realm (str) – name of the protected realm. This can be only alphanumeric string with spaces
(see: the REALM_RE pattern).

• user_storage (BaseUserStorage) – a storage object used to retrieve user object using their
identifier lookup.

• name (str) – custom name of the authentication middleware useful for handling custom user
storage backends. Defaults to middleware class name.

New in version 0.4.0.

REALM_RE = re.compile(‘^[\\w]+$’)

identify(req, resp, resource, uri_kwargs)
Identify user using Authenticate header with Basic auth.

only_with_storage = True

class graceful.authentication.DummyUserStorage(user=None)
A dummy storage that never returns users or returns specified default.

5.3. API reference 59

https://tools.ietf.org/html/rfc7616

graceful Documentation, Release 0.5.0

This storage is part of Anonymous authentication middleware. It may also be useful for testing purposes or to
disable specific authentication middlewares through app configuration.

Parameters

• user – User object to return. Defaults to None (will never

• authenticate).

New in version 0.4.0.

get_user(identified_with, identifier, req, resp, resource, uri_kwargs)
Return default user object.

class graceful.authentication.IPRangeWhitelistStorage(ip_range, user)
Simple storage dedicated for XForwardedFor authentication.

This storage expects that authentication middleware return client address from its identify() method. For
example usage see XForwardedFor. Because it is IP range whitelist this storage it cannot distinguish dif-
ferent users’ IP and always returns default user object. If you want to identify different users by their IP see
KeyValueUserStorage.

Parameters

• ip_range – Any object that supports in operator (i.e. implements the __cointains__
method). The __contains__ method should return True if identifier falls into specified
whitelist. Tip: use iptools.

• user – Default user object to return on successful authentication.

New in version 0.4.0.

get_user(identified_with, identifier, req, resp, resource, uri_kwargs)
Return default user object.

Note: This implementation expects that identifier is an user address.

class graceful.authentication.KeyValueUserStorage(kv_store, key_prefix=’users’, serializa-
tion=None)

Basic user storage using any key-value store as authentication backend.

Client identities are stored as string under keys matching following template:

<key_prefix>:<identified_with>:<identifier>

Where:

•<key_prefix> is the configured key prefix (same as the initialization argument),

•<identified_with> is the name of authentication middleware that provided user identifier,

•<identifier> is the identifier object that identifies the user.

Note that this key scheme will work only for middlewares that return identifiers as single string objects. Also
the <identifier> part of key template is a plain text value of without any hashing algorithm applied. It may
not be secure enough to store user secrets that way.

If you want to use this storage with middleware that uses more complex identifier format/objects (e.g. the
Basic class) you will have to register own identifier format in the hash_identifier method. For details
see the hash_identifier method docstring or the practical example section of the documentation.

Parameters

60 Chapter 5. Contents

graceful Documentation, Release 0.5.0

• kv_store – Key-value store client instance (e.g. Redis client object). The kv_store must
provide at least two methods: get(key) and set(key,value). The arguments and
return values of these methods must be strings.

• key_prefix – key prefix used to store client identities.

• serialization – serialization object/module that uses the dumps()/loads() protocol. De-
faults to json.

New in version 0.4.0.

get_user(identified_with, identifier, req, resp, resource, uri_kwargs)
Get user object for given identifier.

Parameters

• identified_with (object) – authentication middleware used to identify the user.

• identifier – middleware specifix user identifier (string or tuple in case of all built in au-
thentication middleware classes).

Returns dict – user object stored in Redis if it exists, otherwise None

static hash_identifier(identified_with, identifier)
Create hash from identifier to be used as a part of user lookup.

This method is a singledispatch function. It allows to register new implementations for specific
authentication middleware classes:

from hashlib import sha1

from graceful.authentication import KeyValueUserStorage, Basic

@KeyValueUserStorage.hash_identifier.register(Basic)
def _(identified_with, identifier):

return ":".join((
identifier[0],
sha1(identifier[1].encode()).hexdigest(),

))

Parameters

• identified_with (str) – name of the authentication middleware used to identify the user.

• identifier (str) – user identifier string

Returns str – hashed identifier string

register(identified_with, identifier, user)
Register new key for given client identifier.

This is only a helper method that allows to register new user objects for client identities (keys, tokens,
addresses etc.).

Parameters

• identified_with (object) – authentication middleware used to identify the user.

• identifier (str) – user identifier.

• user (str) – user object to be stored in the backend.

5.3. API reference 61

graceful Documentation, Release 0.5.0

class graceful.authentication.Token(user_storage=None, name=None)
Authenticate user using Token authentication.

Token authentication takes form of Authorization header:

Authorization: Token <token_value>

Where <token_value> is a secret string known to both client and server. Example of valid header:

Authorization: Token 6fa459ea-ee8a-3ca4-894e-db77e160355e

If client fails to authenticate on protected endpoint the response will include following challenge:

WWW-Authenticate: Token

This middleware must be configured with user_storage that provides access to database of client tokens
and their identities.

New in version 0.4.0.

challenge = ‘Token’

identify(req, resp, resource, uri_kwargs)
Identify user using Authenticate header with Token auth.

only_with_storage = True

class graceful.authentication.XAPIKey(user_storage=None, name=None)
Authenticate user with X-Api-Key header.

The X-Api-Key authentication takes a form of X-Api-Key header in the following form:

X-Api-Key: <key_value>

Where <key_value> is a secret string known to both client and server. Example of valid header:

X-Api-Key: 6fa459ea-ee8a-3ca4-894e-db77e160355e

If client fails to authenticate on protected endpoint the response will include following challenge:

WWW-Authenticate: X-Api-Key

Note: This method functionally equivalent to Token and is included only to ease migration of old applications
that could use such authentication method in past. If you’re building new API and require only simple token-
based authentication you should prefere Token middleware.

This middleware must be configured with user_storage that provides access to database of client API keys
and their identities.

New in version 0.4.0.

challenge = ‘X-Api-Key’

identify(req, resp, resource, uri_kwargs)
Initialize X-Api-Key authentication middleware.

only_with_storage = True

class graceful.authentication.XForwardedFor(user_storage=None, name=None, re-
mote_address_fallback=False)

Authenticate user with X-Forwarded-For header or remote address.

62 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Parameters remote_address_fallback (bool) – Use fallback to REMOTE_ADDR value from WSGI
environment dictionary if X-Forwarded-For header is not available. Defaults to False.

This authentication middleware is usually used with the IPRangeWhitelistStorage e.g:

from iptools import IPRangeList
import falcon

from graceful import authentication

IP_WHITELIST = IpRangeList(
'127.0.0.1',
...

)

auth_middleware = authentication.XForwardedFor(
user_storage=authentication.IPWRangehitelistStorage(

IP_WHITELIST, user={"username": "internal"}
)

)

api = application = falcon.API(middleware=[auth_middleware])

Note: Using this middleware class is highly unrecommended if you are not able to ensure that contents of
X-Forwarded-For header can be trusted. This requires proper reverse proxy and network configuration. It
is also recommended to at least use the static IPRangeWhitelistStorage as the user storage.

New in version 0.4.0.

challenge = None

identify(req, resp, resource, uri_kwargs)
Identify client using his address.

only_with_storage = False

graceful.authorization module

graceful.authorization.authentication_required(req, resp, resource, uri_kwargs)
Ensure that user is authenticated otherwise return 401 Unauthorized.

If request fails to authenticate this authorization hook will also include list of WWW-Athenticate challenges.

Parameters

• req (falcon.Request) – the request object.

• resp (falcon.Response) – the response object.

• resource (object) – the resource object.

• uri_kwargs (dict) – keyword arguments from the URI template.

New in version 0.4.0.

5.3. API reference 63

graceful Documentation, Release 0.5.0

graceful.validators module

graceful.validators.min_validator(min_value)
Return validator function that ensures lower bound of a number.

Result validation function will validate the internal value of resource instance field with the value >=
min_value check

Parameters min_value – minimal value for new validator

graceful.validators.max_validator(max_value)
Return validator function that ensures upper bound of a number.

Result validation function will validate the internal value of resource instance field with the value >=
min_value check.

Parameters max_value – maximum value for new validator

graceful.validators.choices_validator(choices)
Return validator function that will check if value in choices.

Parameters max_value (list, set, tuple) – allowed choices for new validator

graceful.validators.match_validator(expression)
Return validator function that will check if matches given expression.

Parameters match – if string then this will be converted to regular expression using re.compile.
Can be also any object that has match() method like already compiled regular regular expres-
sion or custom matching object/class.

graceful.errors module

exception graceful.errors.DeserializationError(missing=None, forbidden=None, in-
valid=None, failed=None)

Raised when error happened during deserialization of representation.

as_bad_request()
Translate this error to falcon’s HTTP specific error exception.

exception graceful.errors.ValidationError
Raised when validation error occured.

as_bad_request()
Translate this error to falcon’s HTTP specific error exception.

Note: Exceptions returned by this method should be used to inform about resource validation failures. In
case of param validation failures the as_invalid_param() method should be used.

as_invalid_param(param_name)
Translate this error to falcon’s HTTP specific error exception.

Note: Exceptions returned by this method should be used to inform about param validation failures. In
case of resource validation failures the as_bad_request() method should be used.

Parameters param_name (str) – HTTP query string parameter name

64 Chapter 5. Contents

graceful Documentation, Release 0.5.0

graceful.resources package

graceful.resources.base module

class graceful.resources.base.BaseResource
Base resouce class with core param and response functionality.

This base class handles resource responses, parameter deserialization, and validation of request included repre-
sentations if serializer is defined.

All custom resource classes based on BaseResource accept additional with_context keyword argument:

class MyResource(BaseResource, with_context=True):
...

The with_context argument tells if resource modification methods (metods injected with mixins -
list/create/update/etc.) should accept the context argument in their signatures. For more details see Deal-
ing with falcon context objects section of documentation. The default value for with_context class keyword
argument is False.

Changed in version 0.3.0: Added the with_context keyword argument.

static __new__(*args, **kwargs)
Do some sanity checks before resource instance initialization.

allowed_methods()
Return list of allowed HTTP methods on this resource.

This is only for purpose of making resource description.

Returns list – list of allowed HTTP method names (uppercase)

describe(req=None, resp=None, **kwargs)
Describe API resource using resource introspection.

Additional description on derrived resource class can be added using keyword arguments and calling
super().decribe() method call like following:

class SomeResource(BaseResource):
def describe(req, resp, **kwargs):

return super().describe(
req, resp, type='list', **kwargs

)

Parameters

• req (falcon.Request) – request object

• resp (falcon.Response) – response object

• kwargs (dict) – dictionary of values created from resource url template

Returns dict – dictionary with resource descritpion information

Changed in version 0.2.0: The req and resp parameters became optional to ease the implementation of
application-level documentation generators.

make_body(resp, params, meta, content)
Construct response body in resp object using JSON serialization.

Parameters

5.3. API reference 65

graceful Documentation, Release 0.5.0

• resp (falcon.Response) – response object where to include serialized body

• params (dict) – dictionary of parsed parameters

• meta (dict) – dictionary of metadata to be included in ‘meta’ section of response

• content (dict) – dictionary of response content (resource representation) to be included in
‘content’ section of response

Returns None

on_options(req, resp, **kwargs)
Respond with JSON formatted resource description on OPTIONS request.

Parameters

• req (falcon.Request) – Optional request object. Defaults to None.

• resp (falcon.Response) – Optional response object. Defaults to None.

• kwargs (dict) – Dictionary of values created by falcon from resource uri template.

Returns None

Changed in version 0.2.0: Default OPTIONS responses include Allow header with list of allowed HTTP
methods.

params
Return dictionary of parameter definition objects.

require_meta_and_content(content_handler, params, **kwargs)
Require ‘meta’ and ‘content’ dictionaries using proper hander.

Parameters

• content_handler (callable) – function that accepts params,meta,**kwargs argu-
ment and returns dictionary for content response section

• params (dict) – dictionary of parsed resource parameters

• kwargs (dict) – dictionary of values created from resource url template

Returns

tuple (meta, content) –

two-tuple with dictionaries of meta and content response sections

require_params(req)
Require all defined parameters from request query string.

Raises falcon.errors.HTTPMissingParam exception if any of required parameters is missing and
falcon.errors.HTTPInvalidParam if any of parameters could not be understood (wrong format).

Parameters req (falcon.Request) – request object

require_representation(req)
Require raw representation dictionary from falcon request object.

This does not perform any field parsing or validation but only uses allowed content-encoding handler to
decode content body.

Note: Currently only JSON is allowed as content type.

Parameters req (falcon.Request) – request object

66 Chapter 5. Contents

graceful Documentation, Release 0.5.0

Returns dict – raw dictionary of representation supplied in request body

require_validated(req, partial=False, bulk=False)
Require fully validated internal object dictionary.

Internal object dictionary creation is based on content-decoded representation retrieved from request body.
Internal object validation is performed using resource serializer.

Parameters

• req (falcon.Request) – request object

• partial (bool) – set to True if partially complete representation is accepted (e.g. for patch-
ing instead of full update). Missing fields in representation will be skiped.

• bulk (bool) – set to True if request payload represents multiple resources instead of single
one.

Returns

dict –

dictionary of fields and values representing internal object. Each value is a result of
field.from_representation call.

serializer = None

class graceful.resources.base.MetaResource(name, bases, namespace, **kwargs)
Metaclass for handling parametrization with parameter objects.

static __new__(mcs, name, bases, namespace, **kwargs)
Create new class object instance and alter its namespace.

classmethod __prepare__(mcs, name, bases, **kwargs)
Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict instance so _get_params() method can construct params storage
that preserves the same order of parameters as defined in code.

Parameters

• bases – all base classes of created resource class

• namespace (dict) – namespace as dictionary of attributes

graceful.resources.generic module

class graceful.resources.generic.ListAPI
Generic List API with resource serialization.

Generic resource that uses serializer for resource description, serialization and validation.

Allowed methods:

•GET: list multiple resource instances representations (handled with .list() method handler)

describe(req=None, resp=None, **kwargs)
Extend default endpoint description with serializer description.

on_get(req, resp, **kwargs)
Respond on GET requests using self.list() handler.

5.3. API reference 67

graceful Documentation, Release 0.5.0

class graceful.resources.generic.ListCreateAPI
Generic List/Create API with resource serialization.

Generic resource that uses serializer for resource description, serialization and validation.

Allowed methods:

•GET: list multiple resource instances representations (handled with .list() method handler)

•POST: create new resource from representation provided in request body (handled with .create()
method handler)

•PATCH: create multiple resources from list of representations provided in request body (handled with
.create_bulk() method handler.

create_bulk(params, meta, **kwargs)
Create items in bulk by reusing existing .create() handler.

Note: This is default create_bulk implementation that may not be safe to use in production environment
depending on your implementation of .create() method handler.

on_patch(req, resp, **kwargs)
Respond on PATCH requests using self.create_bulk() handler.

on_post(req, resp, **kwargs)
Respond on POST requests using self.create() handler.

class graceful.resources.generic.ListResource
Basic retrieval of resource instance lists without serialization.

This resource class is intended for endpoints that do not require automatic representation serialization and ex-
tensive field descriptions but still gives support for defining parameters as resource class attributes.

Example usage:

class graceful.resources.generic.PaginatedListAPI
Generic List API with resource serialization and pagination.

Generic resource that uses serializer for resource description, serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

•GET: list multiple resource instances representations (handled with .list() method handler)

class graceful.resources.generic.PaginatedListCreateAPI
Generic List/Create API with resource serialization and pagination.

Generic resource that uses serializer for resource description, serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

•GET: list multiple resource instances representations (handled with .list() method handler)

•POST: create new resource from representation provided in request body (handled with .create()
method handler)

class graceful.resources.generic.Resource
Basic retrieval of resource instance lists without serialization.

68 Chapter 5. Contents

graceful Documentation, Release 0.5.0

This resource class is intended for endpoints that do not require automatic representation serialization and ex-
tensive field descriptions but still gives support for defining parameters as resource class attributes.

Example usage:

class graceful.resources.generic.RetrieveAPI
Generic Retrieve API with resource serialization.

Generic resource that uses serializer for resource description, serialization and validation.

Allowed methods:

•GET: retrieve resource representation (handled with .retrieve() method handler)

describe(req=None, resp=None, **kwargs)
Extend default endpoint description with serializer description.

on_get(req, resp, **kwargs)
Respond on GET requests using self.retrieve() handler.

serializer = None

class graceful.resources.generic.RetrieveUpdateAPI
Generic Retrieve/Update API with resource serialization.

Generic resource that uses serializer for resource description, serialization and validation.

Allowed methods:

•GET: retrieve resource representation handled with .retrieve() method handler

•PUT: update resource with representation provided in request body (handled with .update() method
handler)

on_put(req, resp, **kwargs)
Respond on PUT requests using self.update() handler.

class graceful.resources.generic.RetrieveUpdateDeleteAPI
Generic Retrieve/Update/Delete API with resource serialization.

Generic resource that uses serializer for resource description, serialization and validation.

Allowed methods:

•GET: retrieve resource representation (handled with .retrieve() method handler)

•PUT: update resource with representation provided in request body (handled with .update() method
handler)

•DELETE: delete resource (handled with .delete() method handler)

graceful.resources.mixins module

class graceful.resources.mixins.BaseMixin
Base mixin class.

handle(handler, req, resp, **kwargs)
Handle given resource manipulation flow in consistent manner.

This mixin is intended to be used only as a base class in new flow mixin classes. It ensures that regardless
of resource manunipulation semantics (retrieve, get, delete etc.) the flow is always the same:

1.Decode and validate all request parameters from the query string using
self.require_params() method.

5.3. API reference 69

graceful Documentation, Release 0.5.0

2.Use self.require_meta_and_content() method to construct meta and content dictio-
naries that will be later used to create serialized response body.

3.Construct serialized response body using self.body() method.

Parameters

• handler (method) – resource manipulation method handler.

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified.

• **kwargs – additional keyword arguments retrieved from url template.

Returns Content dictionary (preferably resource representation).

class graceful.resources.mixins.CreateBulkMixin
Add default “bulk creation flow on PATCH” to any resource class.

create_bulk(params, meta, **kwargs)
Create multiple resource instances and return their representation.

This is default multiple resource instances creation method. Value returned is the representation of multiple
resource instances. It will be included in the ‘content’ section of response body.

Parameters

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

• kwargs (dict) – dictionary of values retrieved from the route url template by falcon. This
is suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

on_patch(req, resp, handler=None, **kwargs)
Respond on POST HTTP request assuming resource creation flow.

This request handler assumes that POST requests are associated with resource creation. Thus default flow
for such requests is:

•Create new resource instances and prepare their representation by calling its bulk creation method
handler.

•Set response status code to 201 Created.

Note: this handler does not set Location header by default as it would be valid only for single resource
creation.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – creation method handler to be called. Defaults to self.create.

• **kwargs – additional keyword arguments retrieved from url template.

class graceful.resources.mixins.CreateMixin
Add default “creation flow on POST” to any resource class.

70 Chapter 5. Contents

graceful Documentation, Release 0.5.0

create(params, meta, **kwargs)
Create new resource instance and return its representation.

This is default resource instance creation method. Value returned is the representation of single resource
instance. It will be included in the ‘content’ section of response body.

Parameters

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

• kwargs (dict) – dictionary of values retrieved from route url template by falcon. This is
suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

get_object_location(obj)
Return location URI associated with given resource representation.

This handler is optional. Returned URI will be included as the value of Location header on POST
responses.

on_post(req, resp, handler=None, **kwargs)
Respond on POST HTTP request assuming resource creation flow.

This request handler assumes that POST requests are associated with resource creation. Thus default flow
for such requests is:

•Create new resource instance and prepare its representation by calling its creation method handler.

•Try to retrieve URI of newly created object using self.get_object_location(). If it suc-
ceeds use that URI as the value of Location header in response object instance.

•Set response status code to 201 Created.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – creation method handler to be called. Defaults to self.create.

• **kwargs – additional keyword arguments retrieved from url template.

class graceful.resources.mixins.DeleteMixin
Add default “delete flow on DELETE” to any resource class.

delete(params, meta, **kwargs)
Delete existing resource instance.

Parameters

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

5.3. API reference 71

graceful Documentation, Release 0.5.0

• **kwargs – dictionary of values retrieved from route url template by falcon. This is
suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

on_delete(req, resp, handler=None, **kwargs)
Respond on DELETE HTTP request assuming resource deletion flow.

This request handler assumes that DELETE requests are associated with resource deletion. Thus default
flow for such requests is:

•Delete existing resource instance.

•Set response status code to 202 Accepted.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – deletion method handler to be called. Defaults to self.delete.

• **kwargs – additional keyword arguments retrieved from url template.

class graceful.resources.mixins.ListMixin
Add default “list flow on GET” to any resource class.

list(params, meta, **kwargs)
List existing resource instances and return their representations.

Value returned by this handler will be included in response ‘content’ section.

Parameters

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

• **kwargs – dictionary of values retrieved from route url template by falcon. This is
suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

on_get(req, resp, handler=None, **kwargs)
Respond on GET HTTP request assuming resource list retrieval flow.

This request handler assumes that GET requests are associated with resource list retrieval. Thus default
flow for such requests is:

•Retrieve list of existing resource instances and prepare their representations by calling list retrieval
method handler.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – list method handler to be called. Defaults to self.list.

• **kwargs – additional keyword arguments retrieved from url template.

72 Chapter 5. Contents

graceful Documentation, Release 0.5.0

class graceful.resources.mixins.PaginatedMixin
Add simple pagination capabilities to resource.

This class provides two additional parameters with some default descriptions and add_pagination_meta
method that can update meta with more useful pagination information.

Example usage:

from graceful.resources.mixins import PaginatedMixin
from graceful.resources.generic import ListResource

class SomeResource(PaginatedMixin, ListResource):

def list(self, params, meta):
params has now 'page' and 'page_size' params that
can be used for offset&limit-like operations
self.add_pagination_meta(params, meta)

...

add_pagination_meta(params, meta)
Extend default meta dictionary value with pagination hints.

Note: This method handler attaches values to meta dictionary without changing it’s reference. This
means that you should never replace meta dictionary with any other dict instance but simply modify its
content.

Parameters

• params (dict) – dictionary of decoded parameter values

• meta (dict) – dictionary of meta values attached to response

class graceful.resources.mixins.RetrieveMixin
Add default “retrieve flow on GET” to any resource class.

on_get(req, resp, handler=None, **kwargs)
Respond on GET HTTP request assuming resource retrieval flow.

This request handler assumes that GET requests are associated with single resource instance retrieval.
Thus default flow for such requests is:

•Retrieve single resource instance of prepare its representation by calling retrieve method handler.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – list method handler to be called. Defaults to self.list.

• **kwargs – additional keyword arguments retrieved from url template.

retrieve(params, meta, **kwargs)
Retrieve existing resource instance and return its representation.

Value returned by this handler will be included in response ‘content’ section.

Parameters

5.3. API reference 73

graceful Documentation, Release 0.5.0

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

• **kwargs – dictionary of values retrieved from route url template by falcon. This is
suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

class graceful.resources.mixins.UpdateMixin
Add default “update flow on PUT” to any resource class.

on_put(req, resp, handler=None, **kwargs)
Respond on PUT HTTP request assuming resource update flow.

This request handler assumes that PUT requests are associated with resource update/modification. Thus
default flow for such requests is:

•Modify existing resource instance and prepare its representation by calling its update method handler.

•Set response status code to 202 Accepted.

Parameters

• req (falcon.Request) – request object instance.

• resp (falcon.Response) – response object instance to be modified

• handler (method) – update method handler to be called. Defaults to self.update.

• **kwargs – additional keyword arguments retrieved from url template.

update(params, meta, **kwargs)
Update existing resource instance and return its representation.

Value returned by this handler will be included in response ‘content’ section.

Parameters

• params (dict) – dictionary of parsed parameters accordingly to definitions provided as
resource class atributes.

• meta (dict) – dictionary of meta parameters anything added to this dict will will be later
included in response ‘meta’ section. This can already prepopulated by method that calls
this handler.

• **kwargs – dictionary of values retrieved from route url template by falcon. This is
suggested way for providing resource identifiers.

Returns value to be included in response ‘content’ section

74 Chapter 5. Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

75

graceful Documentation, Release 0.5.0

76 Chapter 6. Indices and tables

Python Module Index

g
graceful.authentication, 57
graceful.authorization, 63
graceful.errors, 64
graceful.fields, 49
graceful.parameters, 52
graceful.resources.base, 65
graceful.resources.generic, 67
graceful.resources.mixins, 69
graceful.serializers, 55
graceful.validators, 64

77

graceful Documentation, Release 0.5.0

78 Python Module Index

Index

Symbols
__new__() (graceful.resources.base.BaseResource static

method), 65
__new__() (graceful.resources.base.MetaResource static

method), 67
__new__() (graceful.serializers.MetaSerializer static

method), 57
__prepare__() (graceful.resources.base.MetaResource

class method), 67
__prepare__() (graceful.serializers.MetaSerializer class

method), 57
__subclasshook__() (grace-

ful.authentication.BaseUserStorage class
method), 58

A
add_pagination_meta() (grace-

ful.resources.mixins.PaginatedMixin method),
73

allowed_methods() (grace-
ful.resources.base.BaseResource method),
65

Anonymous (class in graceful.authentication), 57
as_bad_request() (graceful.errors.DeserializationError

method), 64
as_bad_request() (graceful.errors.ValidationError

method), 64
as_invalid_param() (graceful.errors.ValidationError

method), 64
authentication_required() (in module grace-

ful.authorization), 63

B
Base64EncodedParam (class in graceful.parameters), 52
BaseAuthenticationMiddleware (class in grace-

ful.authentication), 57
BaseField (class in graceful.fields), 49
BaseMixin (class in graceful.resources.mixins), 69
BaseParam (class in graceful.parameters), 52
BaseResource (class in graceful.resources.base), 65

BaseSerializer (class in graceful.serializers), 55
BaseUserStorage (class in graceful.authentication), 58
Basic (class in graceful.authentication), 59
BoolField (class in graceful.fields), 51
BoolParam (class in graceful.parameters), 54

C
challenge (graceful.authentication.Anonymous attribute),

57
challenge (graceful.authentication.BaseAuthenticationMiddleware

attribute), 58
challenge (graceful.authentication.Token attribute), 62
challenge (graceful.authentication.XAPIKey attribute),

62
challenge (graceful.authentication.XForwardedFor

attribute), 63
choices_validator() (in module graceful.validators), 64
container (graceful.parameters.BaseParam attribute), 53
create() (graceful.resources.mixins.CreateMixin method),

70
create_bulk() (graceful.resources.generic.ListCreateAPI

method), 68
create_bulk() (graceful.resources.mixins.CreateBulkMixin

method), 70
CreateBulkMixin (class in graceful.resources.mixins), 70
CreateMixin (class in graceful.resources.mixins), 70

D
DecimalParam (class in graceful.parameters), 54
delete() (graceful.resources.mixins.DeleteMixin method),

71
DeleteMixin (class in graceful.resources.mixins), 71
describe() (graceful.fields.BaseField method), 50
describe() (graceful.parameters.BaseParam method), 53
describe() (graceful.resources.base.BaseResource

method), 65
describe() (graceful.resources.generic.ListAPI method),

67
describe() (graceful.resources.generic.RetrieveAPI

method), 69

79

graceful Documentation, Release 0.5.0

describe() (graceful.serializers.BaseSerializer method),
55

DeserializationError, 64
DummyUserStorage (class in graceful.authentication), 59

F
fields (graceful.serializers.BaseSerializer attribute), 56
FloatField (class in graceful.fields), 51
FloatParam (class in graceful.parameters), 55
from_representation() (graceful.fields.BaseField

method), 50
from_representation() (graceful.fields.BoolField

method), 51
from_representation() (graceful.fields.FloatField

method), 51
from_representation() (graceful.fields.IntField method),

52
from_representation() (graceful.fields.RawField method),

52
from_representation() (graceful.fields.StringField

method), 52
from_representation() (graceful.serializers.BaseSerializer

method), 56

G
get_attribute() (graceful.serializers.BaseSerializer

method), 56
get_object_location() (grace-

ful.resources.mixins.CreateMixin method),
71

get_user() (graceful.authentication.BaseUserStorage
method), 58

get_user() (graceful.authentication.DummyUserStorage
method), 60

get_user() (graceful.authentication.IPRangeWhitelistStorage
method), 60

get_user() (graceful.authentication.KeyValueUserStorage
method), 61

graceful.authentication (module), 57
graceful.authorization (module), 63
graceful.errors (module), 64
graceful.fields (module), 49
graceful.parameters (module), 52
graceful.resources.base (module), 65
graceful.resources.generic (module), 67
graceful.resources.mixins (module), 69
graceful.serializers (module), 55
graceful.validators (module), 64

H
handle() (graceful.resources.mixins.BaseMixin method),

69

hash_identifier() (grace-
ful.authentication.KeyValueUserStorage
static method), 61

I
identify() (graceful.authentication.Anonymous method),

57
identify() (graceful.authentication.BaseAuthenticationMiddleware

method), 58
identify() (graceful.authentication.Basic method), 59
identify() (graceful.authentication.Token method), 62
identify() (graceful.authentication.XAPIKey method), 62
identify() (graceful.authentication.XForwardedFor

method), 63
IntField (class in graceful.fields), 51
IntParam (class in graceful.parameters), 55
IPRangeWhitelistStorage (class in grace-

ful.authentication), 60

K
KeyValueUserStorage (class in graceful.authentication),

60

L
list() (graceful.resources.mixins.ListMixin method), 72
ListAPI (class in graceful.resources.generic), 67
ListCreateAPI (class in graceful.resources.generic), 67
ListMixin (class in graceful.resources.mixins), 72
ListResource (class in graceful.resources.generic), 68

M
make_body() (graceful.resources.base.BaseResource

method), 65
match_validator() (in module graceful.validators), 64
max_validator() (in module graceful.validators), 64
MetaResource (class in graceful.resources.base), 67
MetaSerializer (class in graceful.serializers), 57
min_validator() (in module graceful.validators), 64

O
on_delete() (graceful.resources.mixins.DeleteMixin

method), 72
on_get() (graceful.resources.generic.ListAPI method), 67
on_get() (graceful.resources.generic.RetrieveAPI

method), 69
on_get() (graceful.resources.mixins.ListMixin method),

72
on_get() (graceful.resources.mixins.RetrieveMixin

method), 73
on_options() (graceful.resources.base.BaseResource

method), 66
on_patch() (graceful.resources.generic.ListCreateAPI

method), 68

80 Index

graceful Documentation, Release 0.5.0

on_patch() (graceful.resources.mixins.CreateBulkMixin
method), 70

on_post() (graceful.resources.generic.ListCreateAPI
method), 68

on_post() (graceful.resources.mixins.CreateMixin
method), 71

on_put() (graceful.resources.generic.RetrieveUpdateAPI
method), 69

on_put() (graceful.resources.mixins.UpdateMixin
method), 74

only_with_storage (graceful.authentication.Anonymous
attribute), 57

only_with_storage (grace-
ful.authentication.BaseAuthenticationMiddleware
attribute), 58

only_with_storage (graceful.authentication.Basic at-
tribute), 59

only_with_storage (graceful.authentication.Token at-
tribute), 62

only_with_storage (graceful.authentication.XAPIKey at-
tribute), 62

only_with_storage (grace-
ful.authentication.XForwardedFor attribute),
63

P
PaginatedListAPI (class in graceful.resources.generic),

68
PaginatedListCreateAPI (class in grace-

ful.resources.generic), 68
PaginatedMixin (class in graceful.resources.mixins), 72
params (graceful.resources.base.BaseResource attribute),

66
process_resource() (grace-

ful.authentication.BaseAuthenticationMiddleware
method), 58

R
RawField (class in graceful.fields), 52
REALM_RE (graceful.authentication.Basic attribute), 59
register() (graceful.authentication.KeyValueUserStorage

method), 61
require_meta_and_content() (grace-

ful.resources.base.BaseResource method),
66

require_params() (graceful.resources.base.BaseResource
method), 66

require_representation() (grace-
ful.resources.base.BaseResource method),
66

require_validated() (grace-
ful.resources.base.BaseResource method),
67

Resource (class in graceful.resources.generic), 68

retrieve() (graceful.resources.mixins.RetrieveMixin
method), 73

RetrieveAPI (class in graceful.resources.generic), 69
RetrieveMixin (class in graceful.resources.mixins), 73
RetrieveUpdateAPI (class in graceful.resources.generic),

69
RetrieveUpdateDeleteAPI (class in grace-

ful.resources.generic), 69

S
serializer (graceful.resources.base.BaseResource at-

tribute), 67
serializer (graceful.resources.generic.RetrieveAPI at-

tribute), 69
set_attribute() (graceful.serializers.BaseSerializer

method), 56
spec (graceful.fields.BaseField attribute), 50
spec (graceful.parameters.Base64EncodedParam at-

tribute), 52
spec (graceful.parameters.BaseParam attribute), 54
StringField (class in graceful.fields), 52
StringParam (class in graceful.parameters), 55

T
to_representation() (graceful.fields.BaseField method),

50
to_representation() (graceful.fields.BoolField method),

51
to_representation() (graceful.fields.FloatField method),

51
to_representation() (graceful.fields.IntField method), 52
to_representation() (graceful.fields.RawField method), 52
to_representation() (graceful.fields.StringField method),

52
to_representation() (graceful.serializers.BaseSerializer

method), 56
Token (class in graceful.authentication), 61
try_storage() (graceful.authentication.BaseAuthenticationMiddleware

method), 58
type (graceful.fields.BaseField attribute), 50
type (graceful.fields.BoolField attribute), 51
type (graceful.fields.FloatField attribute), 51
type (graceful.fields.IntField attribute), 52
type (graceful.fields.RawField attribute), 52
type (graceful.fields.StringField attribute), 52
type (graceful.parameters.BaseParam attribute), 54
type (graceful.parameters.BoolParam attribute), 54
type (graceful.parameters.DecimalParam attribute), 54
type (graceful.parameters.FloatParam attribute), 55
type (graceful.parameters.IntParam attribute), 55
type (graceful.parameters.StringParam attribute), 55

U
update() (graceful.resources.mixins.UpdateMixin

Index 81

graceful Documentation, Release 0.5.0

method), 74
UpdateMixin (class in graceful.resources.mixins), 74

V
validate() (graceful.fields.BaseField method), 50
validate() (graceful.serializers.BaseSerializer method), 56
validated_value() (graceful.parameters.BaseParam

method), 54
ValidationError, 64
value() (graceful.parameters.Base64EncodedParam

method), 52
value() (graceful.parameters.BaseParam method), 54
value() (graceful.parameters.BoolParam method), 54
value() (graceful.parameters.DecimalParam method), 54
value() (graceful.parameters.FloatParam method), 55
value() (graceful.parameters.IntParam method), 55
value() (graceful.parameters.StringParam method), 55

X
XAPIKey (class in graceful.authentication), 62
XForwardedFor (class in graceful.authentication), 62

82 Index

	python3 only
	usage
	contributing
	license
	Contents
	graceful
	python3 only
	usage
	contributing
	license

	Graceful guide
	Resources
	Generic API resources
	Parameters
	Serializers and fields
	Authentication and authorization
	Working with resources
	Content types
	Documenting your API

	API reference
	graceful package
	graceful.resources package

	Indices and tables
	Python Module Index

