

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	graceful 0.6.0 documentation »

 [image: PyPI] [https://pypi.python.org/pypi/graceful/] [image: PyPI] [https://pypi.python.org/pypi/graceful/] [image: Build Status] [https://travis-ci.org/swistakm/graceful] [image: Coverage Status] [https://coveralls.io/r/swistakm/graceful?branch=master] [image: Documentation Status] [https://graceful.readthedocs.io/en/latest/]
[image: Join the chat at https://gitter.im/graceful-for-falcon/Lobby] [https://gitter.im/graceful-for-falcon/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

graceful

graceful is an elegant Python REST toolkit built on top of
falcon [http://github.com/falconry/falcon] framework. It is highly
inspired by Django REST
framework [http://www.django-rest-framework.org/] - mostly by how
object serialization is done but more emphasis here is put on API to be
self-descriptive.

Features:

	generic classes for list and single object resources

	simple but extendable pagination

	simple but extendable authentication and authorization

	structured responses with content/meta separation

	declarative fields and parameters

	self-descriptive-everything: API description accessible both in
python and through OPTIONS requests

	painless validation

	100% tests coverage

	falcon>=0.3.0 (tested up to 1.1.x)

	python3 exclusive (tested from 3.3 to 3.6)

Community behind graceful is starting to grow but we don’t have any
mailing list yet. There was one on
Librelist [http://librelist.com/browser/graceful] but no one used it
and it seems that librelist became dead (see GitHub issue
#36 [https://github.com/swistakm/graceful/issues/36]). For now let’s
use gitter chat until we decide on something new. Chat is available
here [https://gitter.im/graceful-for-falcon/Lobby].

python3 only

Important: graceful is python3 exclusive because right now
should be a good time to forget about python2. There are no plans for
making graceful python2 compatible although it would be pretty
straightforward to do so with existing tools (like six).

usage

For extended tutorial and more information please refer to
guide [https://graceful.readthedocs.org/en/latest/guide/] included
in documentation.

Anyway here is simple example of working API made made with
graceful:

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (
 RetrieveAPI,
 PaginatedListAPI,
)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [
 {"id": 0, "name": "kitty", "breed": "saimese"},
 {"id": 1, "name": "lucie", "breed": "maine coon"},
 {"id": 2, "name": "molly", "breed": "sphynx"},
]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):
 id = IntField("cat identification number", read_only=True)
 name = RawField("cat name")
 breed = RawField("official breed name")

class Cat(RetrieveAPI):
 """
 Single cat identified by its id
 """
 serializer = CatSerializer()

 def get_cat(self, cat_id):
 try:
 return [
 cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)
][0]
 except IndexError:
 raise falcon.HTTPNotFound

 def retrieve(self, params, meta, **kwargs):
 cat_id = kwargs['cat_id']
 return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 serializer = CatSerializer()

 breed = StringParam("set this param to filter cats by breed")

 def list(self, params, meta, **kwargs):
 if 'breed' in params:
 filtered = [
 cat for cat in CATS_STORAGE
 if cat['breed'] == params['breed']
]
 return filtered
 else:
 return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it
with gunicorn [https://github.com/benoitc/gunicorn]:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome
httpie [http://httpie.org] tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
 "content": [
 {
 "breed": "saimese",
 "id": 0,
 "name": "kitty"
 }
],
 "meta": {
 "params": {
 "breed": "saimese",
 "indent": 0
 }
 }
}

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
 "details": "List of all cats in our API",
 "fields": {
 "breed": {
 "details": "official breed name",
 "label": null,
 "spec": null,
 "type": "string"
 },
 "id": {
 "details": "cat identification number",
 "label": null,
 "spec": null,
 "type": "int"
 },
 "name": {
 "details": "cat name",
 "label": null,
 "spec": null,
 "type": "string"
 }
 },
 "methods": [
 "GET",
 "OPTIONS"
],
 "name": "CatList",
 "params": {
 "breed": {
 "default": null,
 "details": "set this param to filter cats by breed",
 "label": null,
 "required": false,
 "spec": null,
 "type": "string"
 },
 "indent": {
 "default": "0",
 "details": "JSON output indentation. Set to 0 if output should not be formated.",
 "label": null,
 "required": false,
 "spec": null,
 "type": "integer"
 }
 },
 "path": "/v0/cats",
 "type": "list"
}

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There is only short set of rules that guide this project
development you should be aware of before submitting a pull request:

	Only requests that have passing CI builds (Travis) will be merged.

	Code is checked with flakes8 and pydocstyle during build so
this implicitly means that compliance with PEP-8 and PEP-257 is
mandatory.

	No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitly. Reviewing pull requests that suddenly had
their history rewritten just drives me crazy.

license

See LICENSE file.

Contents

	graceful
	python3 only

	usage

	contributing

	license

	Graceful guide
	Resources

	Generic API resources
	RetrieveAPI

	RetrieveUpdateAPI

	RetrieveUpdateDeleteAPI

	ListAPI

	ListCreateAPI

	Paginated generic resources

	Generic resources without serialization

	Guide for creating resources in bulk

	Parameters
	Custom parameters

	Parameter validation

	Handling multiple occurences of parameters

	Serializers and fields
	Field arguments

	Field validation

	Resource validation

	Custom fields

	Authentication and authorization
	Authentication - identifying the users

	Authorization - restricting access to the endpoint

	Heterogenous authentication

	Practical example – authentication with redis backend

	Working with resources
	Dealing with falcon context objects

	Content types

	Documenting your API
	Using self-descriptive resources

	Self-hosted documentation

	API reference
	graceful package
	graceful.fields module

	graceful.parameters module

	graceful.serializers module

	graceful.authentication module

	graceful.authorization module

	graceful.validators module

	graceful.errors module

	graceful.resources package
	graceful.resources.base module

	graceful.resources.generic module

	graceful.resources.mixins module

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 [image: PyPI] [https://pypi.python.org/pypi/graceful/] [image: PyPI] [https://pypi.python.org/pypi/graceful/] [image: Build Status] [https://travis-ci.org/swistakm/graceful] [image: Coverage Status] [https://coveralls.io/r/swistakm/graceful?branch=master] [image: Documentation Status] [https://graceful.readthedocs.io/en/latest/]
[image: Join the chat at https://gitter.im/graceful-for-falcon/Lobby] [https://gitter.im/graceful-for-falcon/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

graceful

graceful is an elegant Python REST toolkit built on top of
falcon [http://github.com/falconry/falcon] framework. It is highly
inspired by Django REST
framework [http://www.django-rest-framework.org/] - mostly by how
object serialization is done but more emphasis here is put on API to be
self-descriptive.

Features:

	generic classes for list and single object resources

	simple but extendable pagination

	simple but extendable authentication and authorization

	structured responses with content/meta separation

	declarative fields and parameters

	self-descriptive-everything: API description accessible both in
python and through OPTIONS requests

	painless validation

	100% tests coverage

	falcon>=0.3.0 (tested up to 1.1.x)

	python3 exclusive (tested from 3.3 to 3.6)

Community behind graceful is starting to grow but we don’t have any
mailing list yet. There was one on
Librelist [http://librelist.com/browser/graceful] but no one used it
and it seems that librelist became dead (see GitHub issue
#36 [https://github.com/swistakm/graceful/issues/36]). For now let’s
use gitter chat until we decide on something new. Chat is available
here [https://gitter.im/graceful-for-falcon/Lobby].

python3 only

Important: graceful is python3 exclusive because right now
should be a good time to forget about python2. There are no plans for
making graceful python2 compatible although it would be pretty
straightforward to do so with existing tools (like six).

usage

For extended tutorial and more information please refer to
guide [https://graceful.readthedocs.org/en/latest/guide/] included
in documentation.

Anyway here is simple example of working API made made with
graceful:

import falcon

from graceful.serializers import BaseSerializer
from graceful.fields import IntField, RawField
from graceful.parameters import StringParam
from graceful.resources.generic import (
 RetrieveAPI,
 PaginatedListAPI,
)

api = application = falcon.API()

lets pretend that this is our backend storage
CATS_STORAGE = [
 {"id": 0, "name": "kitty", "breed": "saimese"},
 {"id": 1, "name": "lucie", "breed": "maine coon"},
 {"id": 2, "name": "molly", "breed": "sphynx"},
]

this is how we represent cats in our API
class CatSerializer(BaseSerializer):
 id = IntField("cat identification number", read_only=True)
 name = RawField("cat name")
 breed = RawField("official breed name")

class Cat(RetrieveAPI):
 """
 Single cat identified by its id
 """
 serializer = CatSerializer()

 def get_cat(self, cat_id):
 try:
 return [
 cat for cat in CATS_STORAGE if cat['id'] == int(cat_id)
][0]
 except IndexError:
 raise falcon.HTTPNotFound

 def retrieve(self, params, meta, **kwargs):
 cat_id = kwargs['cat_id']
 return self.get_cat(cat_id)

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 serializer = CatSerializer()

 breed = StringParam("set this param to filter cats by breed")

 def list(self, params, meta, **kwargs):
 if 'breed' in params:
 filtered = [
 cat for cat in CATS_STORAGE
 if cat['breed'] == params['breed']
]
 return filtered
 else:
 return CATS_STORAGE

api.add_route("/v1/cats/{cat_id}", Cat())
api.add_route("/v1/cats/", CatList())

Assume this code is in python module named example.py. Now run it
with gunicorn [https://github.com/benoitc/gunicorn]:

gunicorn -b localhost:8888 example

And you’re ready to query it (here with awesome
httpie [http://httpie.org] tool):

$ http localhost:8888/v0/cats/?breed=saimese
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:43:05 GMT
Server: gunicorn/19.3.0
content-length: 116
content-type: application/json

{
 "content": [
 {
 "breed": "saimese",
 "id": 0,
 "name": "kitty"
 }
],
 "meta": {
 "params": {
 "breed": "saimese",
 "indent": 0
 }
 }
}

Or access API description issuing OPTIONS request:

$ http OPTIONS localhost:8888/v0/cats
HTTP/1.1 200 OK
Connection: close
Date: Tue, 16 Jun 2015 08:40:00 GMT
Server: gunicorn/19.3.0
allow: GET, OPTIONS
content-length: 740
content-type: application/json

{
 "details": "List of all cats in our API",
 "fields": {
 "breed": {
 "details": "official breed name",
 "label": null,
 "spec": null,
 "type": "string"
 },
 "id": {
 "details": "cat identification number",
 "label": null,
 "spec": null,
 "type": "int"
 },
 "name": {
 "details": "cat name",
 "label": null,
 "spec": null,
 "type": "string"
 }
 },
 "methods": [
 "GET",
 "OPTIONS"
],
 "name": "CatList",
 "params": {
 "breed": {
 "default": null,
 "details": "set this param to filter cats by breed",
 "label": null,
 "required": false,
 "spec": null,
 "type": "string"
 },
 "indent": {
 "default": "0",
 "details": "JSON output indentation. Set to 0 if output should not be formated.",
 "label": null,
 "required": false,
 "spec": null,
 "type": "integer"
 }
 },
 "path": "/v0/cats",
 "type": "list"
}

contributing

Any contribution is welcome. Issues, suggestions, pull requests -
whatever. There is only short set of rules that guide this project
development you should be aware of before submitting a pull request:

	Only requests that have passing CI builds (Travis) will be merged.

	Code is checked with flakes8 and pydocstyle during build so
this implicitly means that compliance with PEP-8 and PEP-257 is
mandatory.

	No changes that decrease coverage will be merged.

One thing: if you submit a PR please do not rebase it later unless you
are asked for that explicitly. Reviewing pull requests that suddenly had
their history rewritten just drives me crazy.

license

See LICENSE file.

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

Graceful guide

	Resources

	Generic API resources
	RetrieveAPI

	RetrieveUpdateAPI

	RetrieveUpdateDeleteAPI

	ListAPI

	ListCreateAPI

	Paginated generic resources

	Generic resources without serialization

	Guide for creating resources in bulk
	Completely separate bulk and single resource creation

	Deferred saves

	Utilize your storage transactions

	Parameters
	Custom parameters

	Parameter validation

	Handling multiple occurences of parameters
	Order of values and ordered data

	Custom containers

	Serializers and fields
	Field arguments

	Field validation

	Resource validation

	Custom fields

	Authentication and authorization
	Authentication - identifying the users
	User objects and working with user storages

	Implictit authentication without user storages

	Custom authentication middleware

	Authorization - restricting access to the endpoint

	Heterogenous authentication

	Practical example – authentication with redis backend

	Working with resources
	Dealing with falcon context objects

	Content types

	Documenting your API
	Using self-descriptive resources

	Self-hosted documentation
	Serving HTML and using Jinja templates in falcon

	Populating templates with resources metadata

	Formatting resource class docstrings

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Resources

Resources are main building blocks in falcon. This is also true with
graceful.

The most basic resource of all is a graceful.resources.base.BaseResource
and all other resource classes in in this package inherit from BaseResource.
It will not provide you with full set graceful features (like
object serialization, pagination, resource fields descriptions etc.)
but it is a good starting point if you want to build everything by yourself
but still need to have some consistent response structure and
self-descriptive parameters.

In most cases (simple GET-allowed resources) you need only to provide
your own http GET method handler like following:

from graceful.resources.base import BaseResource
from graceful.parameters import StringParam, IntParam

class SomeResource(BaseResource):
 # describe how HTTP query string parameters are handled
 some_param = StringParam("example string query string param")
 some_other_param = IntParam("example integer query string param")

 def on_get(self, req, resp):
 # retrieve dictionary of query string parameters parsed
 # and validated according to resource class description
 params = self.require_params(req)

 ## create your own response like always:
 # resp.body = "some content"

 ## or use following:
 # self.make_body(resp, params, {}, 'some content')

Note

Due to how falcon works there is always only a single instance of the
resource class for a single registered route. Please remember to not keep
any request processing state inside of this object using self.attribute
lookup. If you need to store and access some additional unique data during
whole request processing flow you may want to use
context-aware resource classes.

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Generic API resources

graceful provides you with some set of generic resources in order to help you
describe how structured is data in your API. All of them expect that some
serializer instance is provided as a class level attribute. Serializer will
handle describing resource fields and also translation between
resource representation and internal object values that you use inside of
your application.

RetrieveAPI

RetrieveAPI represents single element serialized resource. In ‘content’
section of GET response it will return single object. On OPTIONSrequest
it will return additional field named ‘fields’ that describes all serializer
fields.

It expects from you to implement .retrieve(self, params, meta, **kwargs)
method handler that retrieves single object (e.g. from some storage) that will
be later serialized using provided serializer.

retrieve() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateAPI

RetrieveUpdateAPI extends RetrieveAPI with capability to
update objects with new data from resource representation provided in
PUT request body.

It expects from you to implement same handlers as for RetrieveAPI
and also new .update(self, params, meta, validated, **kwargs) method handler
that updates single object (e.g. in some storage). Updated object may or may
not be returned in response ‘content’ section (this is optional)

update() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	validated (dict): dictionary of internal object fields values
after converting from representation with full validation performed
accordingly to definition contained within serializer instance.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

If update will return any value it should have same form as return value
of retrieve() because it will be again translated into representation
with serializer.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

 def update(self, params, meta, foo_id, **kwargs):
 return db.Foo.update(id=foo_id)

note: url template kwarg that will be passed to
`FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

RetrieveUpdateDeleteAPI

RetrieveUpdateDeleteAPI extends RetrieveUpdateAPI with
capability to delete objects using DELETE requests.

It expects from you to implement same handlers as for RetrieveUpdateAPI
and also new .delete(self, params, meta, **kwargs) method handler
that deletes single object (e.g. in some storage).

delete() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooResource(RetrieveUpdateAPI):
 serializer = RawSerializer()

 def retrieve(self, params, meta, foo_id, **kwargs):
 return db.Foo.get(id=foo_id)

 def update(self, params, meta, foo_id, **kwargs):
 return db.Foo.update(id=foo_id)

 def delete(self, params, meta, **kwargs):
 db.Foo.delete(id=foo_id)

note url template param that will be passed to `FooResource.get_object()`
api.add_route('foo/{foo_id}', FooResource())

ListAPI

ListAPI represents list of resource instances. In ‘content’
section of GET response it will return list of serialized objects
representations. On OPTIONS request it will return additional
field named ‘fields’ that describes all serializer fields.

It expects from you to implement .list(self, params, meta, **kwargs)
method handler that retrieves list (or any iterable) of objects
(e.g. from some storage) that will be later serialized using provided
serializer.

list() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListAPI):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 return db.Foo.all(id=foo_id)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

ListCreateAPI

ListCreateAPI extends ListAPI with capability to
create new objects with data from resource representation provided in
POST or PATCH request body.

It expects from you to implement same handlers as for ListAPI
and also new .create(self, params, meta, validated, **kwargs)
and (optionally) .create_bulk(self, params, meta, validated, **kwargs)
method handlers that are able to create single single and multiple objects
(e.g. in some storage). Created object may or may not be returned in response
‘content’ section (this is optional)

create() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	validated (dict): a single dictionary of internal object fields
values after converting from representation with full validation performed
accordingly to definition contained within serializer instance.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

create_bulk() accepts following arguments:

	params (dict): dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict): dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	validated (dict): a list of multiple dictionaries of internal
objects’ field values after converting from representation with
full validation performed accordingly to definition contained within
serializer instance.

	kwargs (dict): dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

If create() and create_bulk() return any value then it should have
same form compatible with the return value of retrieve() because it will
be again translated into representation with serializer. Of course create()
should return single instance of resource but create_bulk() should return
collection of resources.

Note that default implementation of ListCreateAPI.create_bulk() is very
simple and may not be suited for every use case. If you want to use it please
refer to Guide for creating resources in bulk.

Example usage:

db = SomeDBInterface()
api = application = falcon.API()

class FooListResource(ListCreateAPI):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 return db.Foo.all(id=foo_id)

 def create(self, params, meta, validated, **kwargs):
 return db.Foo.create(**validated)

note that in most cases there is no need do define
variables in url template for list type of resources
api.add_route('foo/', FooListResource())

Paginated generic resources

PaginatedListAPI and PaginatedListCreateAPI are versions
of ListAPI and ListAPI classes that support simple pagination
with following parameters:

	page_size: size of a single response page

	page: page count

They also will ‘meta’ section with following information on GET requests:

	page_size

	page

	next - url query string for next page (only if meta['is_more'] exists
and is True)

	prev - url query string for previous page (None if first page)

Paginated variations of generic list resource do not assume anything about
your resources so actual pagination must still be implemented inside of
list() handlers. Anyway this class allows you to manage params and meta
for pagination in consistent way across all of your resources if you only
decide to use it:

db = SomeDBInterface()
api = application = falcon.API()

class FooPaginatedResource(PaginatedListAPI):
 serializer = RawSerializer()

 def list(self, params, meta, **kwargs):
 query = db.Foo.all(id=foo_id).offset(
 params['page'] * params['page_size']
).limit(
 params['page_size']
)

 # use meta['has_more'] to find out if there are
 # any pages behind this one
 if db.Foo.count() > (params['page'] + 1) * params['page_size']:
 meta['has_more'] = True

 return query

api.add_route('foo/', FooPaginatedtResource())

Note

If you don’t like anything about this opinionated meta section that
paginated generic resources provide, you can always override it with
own add_pagination_meta(params, meta) method handler.

Generic resources without serialization

If you don’t like how serializers work there are also two very basic generic
resources that does not rely on serializers: Resource and
ListResource. They can be extended with mixins found in
graceful.resources.mixins module and provide the same method handlers
like the generic resources that utilize serializers (i.e. list(),
retrieve(), update() and so on). Note that they do not perform anything
beyond content-type level serialization.

Guide for creating resources in bulk

ListCreateAPI ships with default implementation of create_bulk()
method that will call the create() method separately for every resource
instance retrieved from request payload. The actual code is following:

def create_bulk(self, params, meta, **kwargs):
 validated = kwargs.pop('validated')
 return [self.create(params, meta, validated=item) for item in validated]

This approach to bulk resource creation may not be the most performant one if
you save resource instance to your storage on every create() call.
The other concern is whether you care about data consistency in your storage
and want to ensure the “all or nothing” semantics. With default bulk creation
handler it may be hard to enforce such contraints. Anyway, you can easily
override this method to suit your own needs.

There are at least three ways you can handle bulk resource creation in graceful:

	Completely separate bulk and single resource creation: allow create()
and create_bulk() handlers to have their own separate code responsible
for saving data in the storage.

	Deffered saves: Allow your create() handler to skip saves if specific
keyword parameter is set and then do your saves in th create_bulk()
handler.

	Utilize your storage transactions: Wrap your data processing with
per-request transaction to ensure “all or nothing” semantics on database
level.

Completely separate bulk and single resource creation

This approach is simplest to implement but makes only sense if the process
of your resource creation is very simple and heavily relies on serializers
to validate and prepare your data before save.

Assume your API allows to create and retrieve simple documents in some simple
storage that may even not be a real database. Good example would be an API
dealing with Solr search engine:

from pysolr import Solr

from graceful.serializers import BaseSerializer
from graceful.fields import StringField
from graceful.resources.generic import ListCreateAPI

solr = Solr("<solr url>", "<solr port>")

class DocumentSerializer(BaseSerializer):
 text = StringField("Document content")
 author = StringField(
 "Document author",
 # note: Assume that due to legacy reasons this field
 # is stored under different name in Solr.
 # graceful is great in dealing with such problems!
 source="autor_name_t"
)

class DocumentsAPI(ListCreateAPI):
 def list(self, params, meta, **kwargs):
 return solr.search("*:*")

 def create(self, params, meta, validated, **kwargs):
 solr.add([validated])
 # note: return document back so its representation
 # can be included in response body
 return validated

Solr search engine is especially good example here because it will not handle
well multiple single-ducument save requests and the best approach is to
batch them. The pysolr module (popular library for integration with solr)
allows you to save multiple documents with single Solr.add() call.
Actually, it even encourages you to batch documents using single call because
it accepts only list as input argument.

Let’s override the default create_bulk() so it will save all the documents
it receives as the validated argument without calling create() handler:

class DocumentsAPI(ListCreateAPI):
 def list(self, params, meta, **kwargs):
 return solr.search("*:*")

 def create(self, params, meta, validated, **kwargs):
 solr.add([validated])
 # note: return document back so its representation
 # can be included in the response body
 return validated

 def create_bulk(self, params, meta, validated, **kwargs):
 solr.add(validated)
 # note: return documents back so their representation
 # can be included in the response body
 return validated

Note that above technique works best for simple use cases where the
validated argument represents complete data that can be easily saved
directly to your storage without any further modification.

If you need any additional processing of resources in your custom create()
and create_bulk() methods before saving them to your storage,
the code can quickly become hard to mantain. Anyway, you can start with this
approach and refactor it later into deferred saves pattern as these two are
very alike and offer similar advantages.

Deferred saves

In previous section we said that having separate code that independently saves
single resource and resources in bulk may not be a best approach if you
need to make some additional data processing before saves. No matter
if you do a non-serializer-based data validation or talk to some other external
services, you will need to duplicate this additional processing code in both
handlers. With proper approach you can limit the code duplication by extrating
your resource processing procedures to additial methods but it will eventually
make things unnecessarily complex and will still be hard to maintain.

A little improvement to previous code is to reuse single resource creation
handler in your custom create_bulk() implementation but allow the
create() handler to skip saving data to storage on the caller’s demand.
Thus any per-resource processing will always stay in the create() handler
code and the create_bulk() will be responsible only for saving the data in
bulk:

class DocumentsAPI(ListCreateAPI):
 def list(self, params, meta, **kwargs):
 return solr.search("*:*")

 def create(self, params, meta, validated, skip_save=False, **kwargs):
 # do some additional processing like adding defaults etc.
 validated['created_at'] = time.time()

 # note: skip_save defaults to False on ordinary POST requests
 # this means ``create()`` was called in single-resource mode
 if not skip_save:
 solr.add([validated])

 # note: return document back so its representation
 # can be included in the response body
 return validated

 def create_bulk(self, params, meta, validated, **kwargs):
 validated = kwargs.pop('validated')

 processed = [
 self.create(params, meta, item, skip_save=True)
 for item in validated
]
 solr.add(processed)

 return processed

This way you can be sure that anything you add to the create() handler
will also affect the resources created in bulk. Additionally your API is more
efficient because it can save the data in bulk with single request to your
storage backend instead of making multiple requests.

Utilize your storage transactions

Sometimes you may not concerned about the performance of multiple small saves
but only want to have the “all or nothing” semantics of the bulk creation
method. If the integration with your storage backend allows you to enforce
transactions on the block of code you can easily use such feature to make sure
that all the separate saves done with create() handler will take effect
in the “all or nothing” manner. Good use case for such appoach could be working
with any RDBMS that allows to use transactions.

Let’s assume you have a per-request session object that wraps the
integration with the storage backend and allows you to set savepoints and
commit/rollback transactions. Many ORM layers (e.g. SQLAlchemy) offer such
kind of object code for such technique may look very simillar for different
storage providers:

note: example sqlachemy integration could work that way
engine = create_engine("...")
Session = sessionmaker(bind=engine)

class MyAPI(ListCreateAPI):
 def on_post(req, resp, **kwargs):
 # inject session object into kwargs so it can be later
 # used by ``create()`` handler to manipulate storage
 # and manage transaction
 session = Session()
 try:
 super().on_post(req, resp, session=session, **kwargs)
 except:
 session.rollback()
 raise
 else:
 session.commit()

 def on_patch(req, resp, **kwargs):
 # inject session object into kwargs so it can be later
 # used by ``create_bulk()`` handler to manipulate storage
 # and manage transaction
 session = Session()
 try:
 super().on_patch(req, resp, session=session, **kwargs)
 except:
 session.rollback()
 raise
 else:
 session.commit()

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Parameters

Parameters provide a way to describe and evaluate all request query params
that can be used in your API resources.

New parameters are added to resources as class attributes:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
 filter_by_name = StringParam("Filter resource instances by their name")
 depth = IntParam("Set depth of search")

Class attribute names map directly to names expected in the query string. For
example the valid query strings in scope of preceding definition could be:

	filter_by_name=cats

	filter_by_name=dogs&depth=2

All param classes accept this set of arguments:

	details (str): verbose description of parameter. Should contain all
information that may be important to your API user and will be used for
describing resource on OPTIONS requests and .describe()
call.

	label (str): human readable label for this parameter (it will be used for
describing resource on OPTIONS requests).

Note that it is recomended to use parameter names that are self-explanatory
intead of relying on param labels.

	required (bool): if set to True then all GET, POST, PUT,
PATCH and DELETE requests will return 400 Bad Request response
if query param is not provided.

	default (str): set default value for param if it is not
provided in request as query parameter. This MUST be a raw string
value that will be then parsed by .value() handler.

If default is set and required is True it will raise
ValueError as having required parameters with default
value has no sense.

	param (str): set to True if multiple occurences of this parameter
can be included in query string, as a result values for this parameter will
be always included as a list in params dict. Defaults to False.

Note

If many==False and client inlcudes multiple values for this
parameter in query string then only one of those values will be
returned, and it is undefined which one.

For list of all available parameter classes please refer to
graceful.parameters module reference.

If you are using the bare falcon HTTP method handlers and sublcass directly
from graceful.resources.base.BaseResource then you can access all
deserialized query parameters as dictionary using require_params(req)
method:

from graceful.parameters import StringParam, IntParam
from graceful.resources.base import BaseResource

class SomeResource(BaseResource):
 filter_by_name = StringParam("Filter resource instances by their name")
 depth = IntParam("Set depth of search")

 def on_get(self, req, resp):
 params = self.require_params(req)

The self.require_params(req) will try to retrieve all of described query
parameters, validate them and populate with defaults if they were not found
in the query string. This method will also take care of raising the
falcon.errors.HTTPInvalidParam if:

	parameter specified as required=True was not provided

	parameter could not be parsed/validated (i.e. value() handler raised
ValueError)

Note that you do not need to handle this exception manually. It will be later
automatically transformed to 400 Bad Request by falcon if not catched
by try .. except clause.

If you are using generic resource classes from graceful.resources.generic
like ListAPI or RetrieveAPI the params retrieval step is done
automatically and you do not need to care. Parameters dict will be provided
in applicable retrieval/modification method handler (list(), update(),
retrieve etc.) and these methods will be executed only if call to
self.require_params(req) succeeded without raising any exceptions.

Custom parameters

Although graceful ships with some set of predefined parameter classes it is
very likely that you need something that is not yet covered because:

	it is not yet covered

	is very specific to your application

	it can be implemented in many ways and it is impossible to decide which is
best without being too opinionated.

New parameter types can be created by subclassing BaseParam and
and implementing .value(raw_value) method handler. ValueError raised
in this handler will eventually result in 400 Bad Request response.

Two additional class-level attributes help making more verbose parameter
description:

	type - string containig name of primitive data type like: “int”, “string”,
“float” etc. For most custom parameters this will be simply “string” and it
is used only for describtions so make sure it is something truely generic
or well described in your API documentation

	spec - two-tuple containing link name, and link url to any external
documentation that you may find helpful for developers.

Here is example of custom parameter that handles validation of alpha2 country
codes using pycountry module:

import pycountry

class LanguageParam(BaseParam):
 """
 This param normalizes language code passed to is and checks if it is valid
 """

 type = 'ISO 639-2 alpha2 language code'
 spec = (
 'ISO 639-2 alpha2 code list',
 "http://www.loc.gov/standards/iso639-2/php/code_list.php",
)

 def value(self, raw_value):
 try:
 # normalize code since we store then lowercase
 normalized = raw_value.lower()
 # first of all check if country so no query will be made if it is
 # invalid
 pycountry.languages.get(alpha2=normalized)

 return normalized

 except KeyError:
 raise ValueError(
 "'{code}' is not valid alpha2 language code"
 "".format(code=raw_value)
)

Parameter validation

Custom parameters are great for defining new data types that can be passed
through HTTP query string or handling very specific cases like country codes,
mime types, or even database filters. Still it may be sometimes an overkill
to define new parameter class to do something as simple as ensure min/max
bounds for numeric value or define as set of allowed choices.

All of basic parameters available in graceful accept validators keyword
argument that accepts a list of validation functions. These function will be
always called upon parameter retrieval. This functionality allows you to
quickly extend the semantic of your parameters without the need of subclassing.

A validator is any callable that accepts single positional argument
that will be a value returned from call to the value() handler of parameter
class. If validation funtion fails it is supposed to return
graceful.errors.ValidationError that will be later translated to
proper HTTP error response. Following is example of simple validation function
which ensures that parameter string is palindrome:

from graceful.resources.base import BaseResource
from graceful.parameters import StrParam
from graceful.errors import ValidationError

def is_palindrome(value):
 if value != value[::-1]:
 raise ValidationError("{} is not a palindrome")

class FamousPhrases(Resource):
 palindrome_query = StrParam(
 "Palindrome text query", validators=[is_palindrome]
)

Validators always work on deserialized values and this allows to easily reuse
the same code across different types of parameters and also between fields
(see: Field validation). Graceful takes advantage of this fact and already
provides you with a small set of fully reusable validators that can be used to
validate both your parameters and serialization fields. For more details see
graceful.validators module reference.

Handling multiple occurences of parameters

The simplest way to allow user to specify multiple occurences of single
parameter is to use many keyword argument. It is available for every
base parameter class initialization and it is good practice to not override
this argument in custom parameter classes using custom initialization.

If many is set to True for given parameter the resulting params
dictionary available in main method handlers of generic resources or through
self.require_params(req) method will contain list of values for given
resource instead of single value.

For instance, if you are building some text search API and expect client
to provide multiple search string in single query you can describe your
basic API as follows:

from graceful.parameters import StringParam
from graceful.resources.base import BaseResource

class SearchResource(BaseResource):
 search = StringParam("text search string", many=True)

With such definition your client can provide list of multiple values for the
search param using multiple instances of search=<value> in his query
string e.g:

search=matt&search=damon&search=affleck

Important: if many is set to False the value stored under
corresponding key will always represent the single parameter value. It is
important to note that providing multiple values for same parameter in the
query string by your API client is not considered an error even if parameter is
described as many=False. In that case only one value will be included in
parameters dictionary and it is not defined which one. When documenting your
API you need to take special care when informing which parameter supports
muliple value and which not. You should also make sure to inform API users
of possibility of undefined behaviour when not following your instructions.

Order of values and ordered data

Remember that multiple values coming from parameter defined using many=True
should be always considered independend from each other. This means that
order of resulting parameter values is always undefined.
If you need to handle parameters that represent specifically ordered list you
probably need custom parameter class that that will provide you with required
serialization. Such representation is generally independent from the many
argument of such custom parameter class.

The reason for that design decision is because when order of data is important
then usually the order by itself represents is a named quality or entity.

The best way to undestand this is by example. For instance let’s assume that
we are building some simple API that allows to search through some inventory
of clothes store. If we would like to allow clients to filter items by their
colors it completely makes sense to use following definition of query
parameter:

color = StringParam("One of main color items", many=True)

But if you are building some spatial search engine you might want to allow
user to search for data in region defined as a polygon. Polygon can be simply
represented by just an ordered list of points. But does it makes sense
to define your polygon as point parameter with many=True? Probably not.
In case where order of data is important you need some custom parameter class
that will explicitly define how to handle such parameters. The naive
implementation for polygon parameter could be as follows:
The naive

from graceful.parameters import BaseParam

class PolygonParam(BaseParam):
 """ Represents polygon parameter in string form of "x1,y1;x2,y2;..."
 """
 type = 'polygon'

 def value(self, raw_value):
 return [
 [float(x) for x in point.split(',')]
 for point in raw_value.split(';')
]

Such approach your will eventually make your code and API:

	Easier to understand - you will end up using parameter names that better
explain what you and your API users are dealing with.

	Easier to document - parameter class can be inspected for the purpose of
auto documentation. Their basic attributes (type and spec) are already
included in default OPTIONS handler.

	Easier to extend - if you suddenly realize that you need to support multiple
ordered sets of same type of data it is as simple as adding additional
many=True to declaration of parameter that represents some data container

Custom containers

With the many=True option multiple values for the same parameter will be
returned as list. But sometimes you may want to do additional processing when
many option is enables. For instance you may want to concatenate all
string searches to single string, make sure all values are unique or join
some ORM query sets using logical operator.

Of course it is completely valid approach to make such operation in your HTTP
method handler (in case of using BaseResource) or in your specific
retrieval/update handler (in case of using generic resource classes). This is
usually very simple:

from graceful.parameters import StringParam
from graceful.resources.generic import PaginatedListAPI

class CatList(PaginatedListAPI):
 """
 List of all cats in our API
 """
 breed = StringParam(
 "set this param to filter cats by breed"
 many=True
)

 def list(self, params, meta, **kwargs):
 unique_breeds = set(param['breed']
 ...

Unfortunately, when you have a lot of different parameters that need
similar handling (e.g. various ORM-specific filter objects) this can become
tedious and lead to excessive code duplication. The easiest way overcome this
problem is to use custom container handler for multiple parameter occurences.
This can be done in your custom parameter class by overriding its default
container attribute.

The container handler can be both type object or a new method. It must accept
list of values as its single positional argument.

Following is an example StringParam re-implementation which additionally
makes sure that multiple occurences of the same parameter are all unique.
Uniqueness is simply achieved by using built-in set type as its
container attribute:

from graceful.parameters import BaseParam

class UniqueStringParam(BaseParam):
 """Same as StringParam but on ``many=True`` returns set of values."""
 container = set

As already said, container handler can be a method too. This is very useful
for handling more complex use cases. For instance solrq [http://solrq.readthedocs.io/en/latest/]
is a nice utility for creating Apache Solr [http://lucene.apache.org/solr/]
search engine queries in Python. If your API somehow exposes Solr search it
would be nice to make parameter class that converts query string params
directly to solrq.Q objects. solrq allows also to easily join
multiple query objects using binary AND and OR operators in similar fashion
to Django’s queryset filters:

>>> Q(text='cat') | Q(text='dog')
<Q: text:cat OR text:dog>

It really makes sense to take advantage of such feature in your parameter
class that wraps GET params in solrq.Q instances whenever many=True
option is enabled. Following is example of custom parameter class that allows
to collapse multiple values of search queries to single solrq.Q instance
with predefined operator:

from graceful.params import StringParam

import operator
from functools import reduce

class FilterQueryParam(StringParam):
 """
 Param that represents Solr filter queries logically
 joined together depending on value of `op` argument
 """
 def __init__(
 self,
 details,
 solr_field,
 op=operator.and_,
 **kwargs
):
 if solr_field is None:
 raise ValueError(
 "`solr_field` argument of {} cannot be None"
 "".format(self.__class__.__name__)
)

 self.solr_field = solr_field
 self.op = op

 super().__init__(details, **kwargs)

 def value(self, raw_value):
 return Q({self.solr_field: raw_value})

 def container(self, values):
 return reduce(self.op, values) if len(values) > 1 else values[0]

With such definition creating simple Solr-backed search API using graceful
and without extensive object serialization becomes pretty simple:

import operator

from solrq import Value as V
from pysolr import Solr
from graceful.resources.generic import ListAPI
from graceful.serializers import BaseSerializer

solr = Solr()

class VerbatimSerializer():
 """ Represents object as it is assuming that we deal with simple dicts
 """
 def to_representation(self, obj):
 return obj

class Search(ListAPI):
 serializer = VerbatimSerializer()

 text = FilterQueryParam(
 "Basix text search argumment (many values => AND)",
 many=True,
 solr_field='text'
 default=V('*', safe=True)
)

 category = StringParam(
 "set this param to filter cats by breed (many values => OR)"
 many=True,
 solr_field='category'
 default=V('*', safe=True),
 op=operator.or_,
)

 def list(self, params, meta, **kwargs):
 return list(solr.search(params['text'] & params['category']))

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Serializers and fields

The purpose of serializers and fields is to describe how structured is data
that your API resources can return and accept. They together describe what
we could call a “resource representation”.

They also helps binding this resource representation with internal objects
that you use in your application no matter what you have there - dicts, native,
class instances, ORM objects, documents, whatever.
There is only one requirement: there must be a way to represent them as a set
of independent fields and their values. In other words: dictionaries.

Example of simple serializer:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
 species = RawField("non normalized cat species")
 age = IntField("cat age in years")
 height = FloatField("cat height in cm")

Serializers are intended to be used with generic resources provided by
graceful.resources.generic module so only handlers
for retrieving, updating,
creating etc. of objects from validated data is needed:

Functionally equivalent example using generic resources:

from graceful.resources.generic import RetrieveUpdateAPI
from graceful.serializers import BaseSerializer
from graceful.fields import RawField, FloatField

class Cat(object):
 def __init__(self, name, height):
 self.name = name
 self.height = height

class CatSerializer(BaseSerializer):
 name = RawField("name of a cat")
 height = FloatField("height in cm")

class CatResource(RetrieveUpdateAPI):
 serializer = CatSerializer()

 def retrieve(self, params, meta, **kwargs):
 return Cat('molly', 30)

 def update(self, params, meta, validated, **kwargs):
 return Cat(**validated)

Anyway serializers can be used outside of generic resources but some additional
work need to be done then:

import falcon

from graceful.resources.base import BaseResource

class CatResource(BaseResource):
 serializer = CatSerializer()

 def on_get(self, req, resp, **kwargs):
 # this in probably should be read from storage
 cat = Cat('molly', 30)

 self.make_body(
 req, resp,
 meta={},
 content=self.serializer.to_representation(cat),
)

 def on_put(self, req, resp, **kwargs)
 validated = self.require_validated(req)
 updated_cat = Cat(**validated)

 self.make_body(
 req, resp,
 meta={},
 # may be nothing or again representation of new cat
 content=self.serializer.to_representation(new_cat),
)

 req.status = falcon.HTTP_CREATED

Field arguments

All field classes accept this set of arguments:

	details (str, required): verbose description of field.

	label (str, optional): human readable label for this
field (it will be used for describing resource on OPTIONS requests).

Note that it is recomended to use field names that are self-explanatory
intead of relying on param labels.

	source (str, optional): name of internal object key/attribute
that will be passed to field’s on .to_representation(value) call.
Special '*' value is allowed that will pass whole object to
field when making representation. If not set then default source will
be a field name used as a serializer’s attribute.

	validators (list, optional): list of validator callables.

	many (bool, optional): set to True if field is in fact a list
of given type objects

	read_only (bool): True if field is read-only and cannot be set/modified
via POST, PUT, or PATCH requests.

	write_only (bool): True if field is write-only and cannot be retrieved
via GET requests.

Note

source='*' is in fact a dirty workaround and will not work well
on validation when new object instances needs to be created/updated
using POST/PUT requests. This works quite well with simple retrieve/list
type resources but in more sophisticated cases it is better to use
custom object properties as sources to encapsulate such fields.

Field validation

Additional validation of field value can be added to each field as a list of
callables. Any callable that accepts single argument can be a validator but
in order to provide correct HTTP responses each validator shoud raise
graceful.errors.ValidationError exception on validation call.

Note

Concept of validation for fields is understood here as a process of checking
if data of valid type (successfully parsed/processed by
.from_representation handler) does meet some other constraints
(lenght, bounds, unique, etc).

Example of simple validator usage:

from graceful.errors import ValidationError
from graceful.serializers import BaseSerializer
from graceful.fields import FloatField

def tiny_validator(value):
 if value > 20.0:
 raise ValidationError

class TinyCats(BaseSerializer):
 """ This resource accepts only cats that has height <= 20 cm """
 height = FloatField("cat height", validators=[tiny_validator])

graceful provides some small set of predefined validator helpers in
graceful.validators module.

Resource validation

In most cases field level validation is all that you need but sometimes you
need to perfom obejct level validation that needs to access multiple fields
that are already deserialized and validated. Suggested way to do this in
graceful is to override serializer’s .validate() method and raise
graceful.errors.ValidationError when your validation fails. This
exception will be then automatically translated to HTTP Bad Request response
on resource-level handlers. Here is example:

class DrinkSerializer():
 alcohol = StringField("main ingredient", required=True)
 mixed_with = StringField("what makes it tasty", required=True)

 def validate(self, object_dict, partial=False):
 # note: always make sure to call super `validate()`
 # so whole validation of fields works as expected
 super().validate(object_dict, partial)

 # here is a place for your own validation
 if (
 object_dict['alcohol'] == 'whisky' and
 object_dict['mixed_with'] == 'cola'
):
 raise ValidationError("bartender refused!')

Custom fields

Custom field types can be created by subclassing of BaseField class
and implementing of two method handlers:

	.from_representation(raw): returns internal data type from raw string
provided in request

	.to_representation(data): returns representation of internal data type

Example of custom field that assumes that data in internal object is stored
as a serialized JSON string that we would like to (de)serialize:

import json

from graceful.fields import BaseField

class JSONField(BaseField):
 def from_representation(raw):
 return json.dumps(raw)

 def to_representation(data):
 return json.loads(data)

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Authentication and authorization

Graceful offers very simple and extendable authentication and authorization
mechanism. The main design principles for authentication and authorization
in graceful are:

	Authentication (identifying users) and authorization
(restricting access to the endpoint) are separate processes and
because of that they should be declared separately.

	Available authentication schemes are gloabl and always the same for whole
application.

	Different resources usually require different permissions so authorization
is always defined on per-resource or per-method level.

	Authentication and authorization layers communicate only through request
context (the req.context attribute).

Thanks to these principles we are able to keep auth implementation very simple
and also allow both mechanisms to be completely optional:

	You can replace the built-in authorization tools with your own custom
middleware classes and hooks. You can also implement authorization layer
inside of the resource modification methods (list/create/retrieve/etc.).

	If your use case is very simple and successful authentication
(user identification) allows for implicit access grant you can use only
the authentication_required decorator.

	If you want to move whole authentication layer outside of your application
code (e.g. using specialized reverse proxy) you can easily do that.
The only thing you need to do is to create some middleware that will properly
modify your request context dictionary to include proper user object.

Authentication - identifying the users

In order to define authentication for your application you need to instantiate
one or more of the built in authentication middleware classes and configure
falcon application to use them. For example:

api = application = falcon.API(middleware=[
 authentication.XForwardedFor(),
 authentication.Anonymous(),
])

If request made the by the user meets all the requirements that are specific to
any authentication flow, the generated/retrieved user object will be included
in request context under req.context['user'] key. If this context variable
exists it is a clear sign that request was succesfully authenticated.

If you use multiple different middleware classes only the first middleware
that succeeded to identify the user will be resolved. This allows for having
fallback authentication mechanism like anonymous users or users identified
by remote address.

User objects and working with user storages

Most of authentication middleware classes provided in graceful require
user_storage initializations argument. This is the object
that abstracts access to the authentication database. It should implement
at least the get_user() method:

from graceful.authentication import BaseUserStorage

class CustomUserStorage(BaseUserStorage):
 def get_user(
 self, identified_with, identifier,
 req, resp, resource, uri_kwargs
):
 ...

Accepted get_user() method arguments are:

	identified_with (object): instance of the authentication middleware
that provided the identifier value. It allows to distinguish different
types of user credentials.

	identifier (object): object that identifies the user. It is specific
for every authentication middleware implementation. For some middlewares
it can be a raw string value (e.g. token or API key).

	req (falcon.Request): the request object.

	resp (falcon.Response): the response object.
resource (object): the resource object.

	uri_kwargs (dict): keyword arguments from the URI template.

If user entry exists in the storage (user can be identified) the method should
return user object. This object usually is just a simple Python dictionary.
This object will be later included in the request context as
req.context['user'] variable. If user cannot be found in the storage
it means that his identifier is either fake or invalid. In such case this
method should always return None.

Note

Note that at this stage you should not verify any user permissions. If you
can identify user but it is unpriviledged client you should still return
the user object. Actual permission checking is a responsibility of the
authorization layer. You should inlcude all user metadata that will be
later required in the authorization process.

Graceful inlcudes a few useful concrete user storage implementations:

	KeyValueUserStorage: simple implementation of user storage using any
key-value database client as a storage backend.

	DummyUserStorage: a dummy user storage that will always return
the configured default user. It is useful only for testing purposes.

	IPRangeWhitelistStorage: user storage with IP range whitelist intended
to be used exclusively with the XForwardedFor authentication
middleware.

Implictit authentication without user storages

Some built-in authentication implementations for graceful do not require
any user storage to be defined in order to work. These authentication
schemes are provided in form of following middlewares:

	authentication.XForwardedFor: the user_storage argument is
completely optional.

	authentication.Anonymous: does not support user_storage argument
at all.

If XForwardedFor is used without any storage it will sucessfully
identify every request. The resulting request object will be syntetic user
dictionary in following form:

{
 'identified_with': <authenticator>,
 'identifier': <user-address>
}

Where <authenticator> is the authentication middleware instance (here
defaults to XForwardedFor) and the indentity will be
client’s address. Client address is either value of X-Forwarded-For header
or remote address taken directly from WSGI enviroment dictionary (only if
middleware is configured with remote_address_fallback=True).

In case of Anonymous the resulting user context variable will be always
the same as the value of middleware’s user initialization argument.

Both XForwardedFor (without user storage) and Anonymous are
intended to be used only as authentication fallbacks for applications that
expect req.context['user'] variable to be always available. This can be
useful for applications that identify every user to track and throttle API
usage on endpoints that do not require any authorization.

Custom authentication middleware

The easiest way to implement custom authentication middleware is by subclassing
the BaseAuthenticationMiddleware. The only method you need to implement
is identify(). It has access to following arguments:
identify(self, req, resp, resource, uri_kwargs):

	req (falcon.Request): falcon request object. You can read headers and
get arguments from it.

	resp (falcon.Response): falcon response object. Usually not accessed
during authentication.

	resource (object): resource object that request is routed to. May be
useful if you want to provide dynamic realms.

	uri_kwags (dict): dictionary of keyword arguments from URI template.

Aditionally you can control further the behaviour of authentication middleware
using following class attributes:

	only_with_storage: if it is set to True, it will be impossible to
initialize the middleware without user_storage argument.

	challenge: returns the challenge string that will be inlcuded in
WWW-Authenticate header on unauthorized request responses. This has
effect only in resources protected with authentication_required.

Authorization - restricting access to the endpoint

The recommended way to implement authorization in graceful is through falcon
hooks that can be applied to whole resources and HTTP method handlers:

import falcon

from graceful.resources.generic import ListAPI

falcon.before(my_authorization_hook)
class MyListResource(ListAPI):
 ...

 @falcon.before(my_other_authorization_hook)
 def on_post(self, *args, **kwargs)
 return super().on_post()

Authorization hooks depend solely on user context stored under
req.context['user']. The usual authorization hook implementation does two
things:

	Check if the 'user' variable is available in req.context dictionary.
If it isn’t then raise the falcon.HTTPForbidden exception.

	Verify user object content (e.g. check his group) and raise the
falcon.HTTPForbidden exception if does not meet specific requirements.

Example of customizable authorization hook implementation that requires
specific user group to be assigned could be as follows:

import falcon

def group_required(user_group):

 @falcon.before
 def authorization_hook(req, resp, resource, uri_kwargs)
 try:
 user = req.context['user']

 except KeyError:
 raise falcon.HTTPForbidden(
 "Forbidden",
 "Could not identify the user!"
)

 if user_group not in user.get('groups', set()):
 raise falcon.HTTPForbidden(
 "Forbidden",
 "'{}' group required!".format(user_group)
)

Depending on your application design and complexity you will need different
authorization handling. The way how you grant/deny access also depends highly
on the structure of your user objects and the preferred user storage.
This is why graceful provides only one basic authorization utility - the
authentication_required decorator.

The authentication_required decorator ensures that request successfully
passed authentication. If none of the authentication middlewares succeeded
to identify the user it will raise falcon.HTTPUnauthorized
exception and include list of available authentication challenges in the
WWW-Authenticate response header. If you use this decorator you don’t need
to check for req.context['user'] existence in your custom authorization
hooks (still, it is a good practice to do so).

Example usage is:

from graceful import authorization
from graceful.resources.generic import ListAPI

from myapp.auth import group_required

@authentication_required
@group_required("admin")
class MyListResource(ListAPI):
 ...

 @falcon.before(my_other_authorization_hook)
 def on_post(self, *args, **kwargs)
 return super().on_post()

Heterogenous authentication

Graceful does not allow you to specify unique per-resource or per-method
authentication schemes. This allows for easier implementation but may not
cover every use case possible.

If you need to restrict some authentication methods to specific resources
(e.g. some custom auth only for internal use) the best way is to handle this
through separate application deployments.

Practical example – authentication with redis backend

Let’s assume we want to build simple REST API application supporting two
authentication schemes:

	Token access authentication with Authorization: Token HTTP header

	Basic access authentication with Authorization: Basic HTTP header
as specified by RFC 7617 [https://tools.ietf.org/html/rfc7616].

As a user database we will use KeyValueUserStorage storage class which is
compatible with any key-value database client that provides two simple methods:

	set(key, value): set key value in the storage. Both key and value should
be strings.

	get(key): get key value from the storage. Both key and return value
should be string.

First step is to create a key-value store client user storage intance that
will be used by both authentication middlewares. With redis and
KeyValueUserStorage this is very simple:

from redis import StrictRedis as Redis
from graceful.authentication import KeyValueUserStorage

auth_storage = KeyValueUserStorage(Redis())

This storage can be used by many different authentication middlewares at the
same time. It will properly prefix every Redis key with middleware name to make
sure different types of user entries do not collide with each other.

The only problem is that default implementation of
KeyValueUserStorage.hash_identifier(identified_with, identifier) method expects
that identifier argument is a single string argument. The Basic
authentication middleware generates identifiers in form of
(username, password) two-tuples. Fortunately you don’t need to use
subclassing in order to override this method behavior. The
hash_identifier method is a single-dispatch generic function [https://docs.python.org/3/library/functools.html#functools.singledispatch] so you
can easily create custom handlers for specific authentication middleware types.

We definitely don’t want to store user passwords in plain text. Let’s register
simple hash_identifier handler for Basic access authentication that
will properly prepare password hash using SHA1 algorithm:

from hashlib import sha1

from graceful.authentication import Basic

@auth_storage.hash_identifier.register(Basic)
def _(identified_with, identifier):
 return ":".join((
 identifier[0],
 hashlib.sha1(identifier[1].encode()).hexdigest()
))

Default hash_identifier leaves single-string identifiers untouched so it
may be a good idea to hash token identifiers in similar fashion too:

@auth_storage.hash_identifier.register(Token)
def _(identified_with, identifier):
 return hashlib.sha1(identifier[1].encode()).hexdigest()

Note

Really secure password verification [https://en.wikipedia.org/wiki/Cryptographic_hash_function#Password_verification] mechanism would require proper
time-consuming hashing algorithm that would prevent application from
brute-force and timing attacks. Anyway, for real end-user applications you
would probably use a session cookie for authentication rather than basic
access authentication. For such case simple SHA1 hashing may not be the
best solution. Still, basic access authentication is a simple
alternative to custom authentication headers and/or GET parameters when
communicating in server-to-server fashion over the secure channel.

Our authentication setup is almost finished. The last things to do is to
initialize authentication middlewares and setup a very basic authorization
to API resources. Following is the code for a very small application that
protects its resources with Token and Basic authentication
middlewares:

import hashlib

from redis import StrictRedis as Redis
import falcon

from graceful.resources.generic import Resource
from graceful.authentication import KeyValueUserStorage, Token, Basic
from graceful.authorization import authentication_required

@authentication_required
class Me(Resource, with_context=True):
 def retrieve(self, params, meta, context):
 return context.get('user')

auth_storage = KeyValueUserStorage(Redis())

@auth_storage.hash_identifier.register(Basic)
def _(identified_with, identifier):
 return ":".join((
 identifier[0],
 hashlib.sha1(identifier[1].encode()).hexdigest()
))

@auth_storage.hash_identifier.register(Token)
def _(identified_with, identifier):
 return hashlib.sha1(identifier[1].encode()).hexdigest()

api = application = falcon.API(
 middleware=[
 Token(auth_storage),
 Basic(auth_storage),
]
)

api.add_route('/me/', Me())

Now you can easily create new user entries using Pyhton console:

>>> from auth_app import auth_storage, Token, Basic
>>> auth_storage.register(Token(auth_storage), 'mytoken', {"user": "me with token"})
>>> auth_storage.register(Basic(auth_storage), ['myusername', 'mysecretpassword'], {"user": "me with password"})

... check if they are successfully saved in Redis:

$ redis-cli keys '*'
1) "users:Token:95cb0bfd2977c761298d9624e4b4d4c72a39974a"
2) "users:Basic:myusername:08cd923367890009657eab812753379bdb321eeb"

... and verify authentication using HTTP client (here with httpie):

$ http localhost:8000/me
HTTP/1.1 401 Unauthorized
Connection: close
Date: Thu, 23 Mar 2017 16:09:55 GMT
Server: gunicorn/19.6.0
content-length: 91
content-type: application/json
vary: Accept
www-authenticate: Token, Basic realm=api

{
 "description": "This resource requires authentication",
 "title": "Unauthorized"
}

$ http localhost:8000/me --auth myusername:mysecretpassword
HTTP/1.1 200 OK
Connection: close
Date: Thu, 23 Mar 2017 16:08:53 GMT
Server: gunicorn/19.6.0
content-length: 76
content-type: application/json

{
 "content": {
 "user": "me with password"
 },
 "meta": {
 "params": {
 "indent": 0
 }
 }
}

$ http localhost:8000/me 'Authorization:Token mytoken'
HTTP/1.1 200 OK
Connection: close
Date: Thu, 23 Mar 2017 16:09:39 GMT
Server: gunicorn/19.6.0
content-length: 73
content-type: application/json

{
 "content": {
 "user": "me with token"
 },
 "meta": {
 "params": {
 "indent": 0
 }
 }
}

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Working with resources

This section of documentation covers various topics related with general
API design handling specific request workflows like:

	Dealing with falcon context object.

	Using hooks and middleware classes.

Dealing with falcon context objects

Falcon’s Request object allows you to store some additional context data
under Request.context attribute in the form of Python dictionary. This
dictionary is available in basic falcon HTTP method handlers like:

	on_get(req, resp, **kwargs)

	on_post(req, resp, **kwargs)

	on_put(req, resp, **kwargs)

	on_patch(req, resp, **kwargs)

	on_options(req, resp, **kwargs)

	...

Graceful has slighly different design principles. If you use the generic
resource classes (i.e. RetrieveAPI, RetrieveUpdateAPI,
ListAPI and so on) or the BaseResource class with
graceful.resources.mixins you will usually end up using only the
simple resource modification handlers:

	list(params, meta, **kwargs)

	retrieve(params, meta, **kwargs)

	create(params, meta, validated, **kwargs)

	...

These handlers do not have the direct access to the request and response
objects (the req and resp arguments). In most cases this is not a
problem. Access to the request object is required usually in order to
retrieve client representation of the resource, GET parameters, and headers.
These things should be completely covered with the proper usage of
parameter classes and
serializer classes. Direct access to the
response object is also rarely required. This is because the serializers are
able to encode resource representation to the response body with negotiated
content-type. If you require additional response access (e.g. to add some
custom response headers), the best way to do that is usually through falcon
middleware classes or hooks.

Anyway, in many cases you may want to work with some unique per-request
context. Typical use cases for that are:

	Providing authentication/authorization objects using middleware classes.

	Providing session/client objects that abstract database connection and
allow handling transactions with automated commits/rollbacks on finished
requests.

Starting from graceful 0.3.0 you can define your resource class as a
context-aware using with_context=True keyword argument. This will change
the set of arguments provided to resource manipulation handlers in the generic
API classes:

from graceful.resources.generic import ListAPI
from graceful.serializers import BaseSerializer

class MyListResource(ListAPI, with_context=True)
 serializer = BaseSerializer()

 def list(self, params, meta, context, **kwargs)
 return {}

And in every non-generic resource class that uses mixins:

from graceful.resources.base import BaseResource
from graceful.resources.mixins import ListMixin

class MyListResource(ListMixin, BaseResource, with_context=True):

 def list(self, params, meta, context, **kwargs):
 pass

The context argument is exactly the same object as Request.context
that you have access to in your falcon hooks or middleware classes.

Note

Future and backwards compatibility of context-aware resource classes

Every resource class in graceful 0.x is not context-aware by default.
Starting from 0.3.0 the context-awareness of the resource
should be explicitly enabled/disabled using the with_context keyword
argument in class definition. Not doing so will result in FutureWarning
generated on resource class instantiation.

Starting from 1.0.0 all resource classes will be context-aware by
default and the with_context keyword argument will become deprecated.
The future of non-context-aware resources is still undecided but it is
very likely that they will be removed completely in 1.x branch.

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Content types

graceful currently talks only JSON. If you want to support other
content-types then the only way is to override
BaseResource.make_body(),
BaseResource.require_representation() and optionally
BaseResource.on_options() etc. methods. Suggested way would be do
create a class mixin that can be added to every of your resources but ideally
it would be great if someone contributed code that adds reasonable content
negotiation and pluggable content-type serialization.

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	Graceful guide »

Documenting your API

Providing clear and readable documentation is very important topic for every
API creator. Graceful does not come with built-in autodoc feature yet, but
is built in a way that allows you to create your documentation very easily.

Every important building block that creates your API definition in graceful
(resource, parameter, and field classes) comes with special describe()
method that returns dictionary of all important metadata necessary to create
clear and readable documentation. Additionally generic API resources
(RetrieveAPI, ListAPI, ListCreateAPI and so on) are aware
of their associated serializers to ease the whole process of documenting your
service.

Using self-descriptive resources

The easiest way do access API metadata programatically is to issue
OPTIONS request to the API endpoint of choice. Example how to do that was
already presented in project’s README [https://github.com/swistakm/graceful]
file and main documentation page. Using this built-in
capability of graceful’s resources it should be definitely easy to populate your
HTML/JS based documentation portal with API metadata.

This is the preferred way to construct documentation portals for your API.
It has many advantages compared to documentation self-hosted within the same
application as your API service. Just to name a few:

	Documentation deployment is decoupled from deployment of your API service.
Documentation portal can be stored in completely different project and
does not even need to be hosted on the same machines as your API.

	Documentation portal may require completely different requirements that could
be in conflict with you.

	API are often secured on different layers and using different authentication
and authorization schemes. But documentations for such APIs are very often
left open. If you keep them both separated it will allow you to reduce
complexity of both projects.

	Changes to documentation layout and aesthetics do not require new deployments
of whole service. This makes your operations more robust.

The popular Swagger [http://swagger.io] project is built with similar idea in
mind. If you like this project and are already familiar with it you should be
able to easily translate API metadata returned by graceful to format that is
accepted by Swagger.

Self-hosted documentation

Decoupling documentation portal from your API service is in many cases the most
reliable option. Anyway, there are many use cases where such approach migth be
simply incovenient. For instance, if you distribute your project as a
downloadable package (e.g. through PyPI) you may want to make it easily
accessible for new users without the need of bootstrapping mutliple processes
and services.

In such cases it might be reasonable to generate documentation in format that
is convenient to the user by the same process that serves your API requests.
The same features that allow you to easily access API metadata via OPTIONS
requests allow you to introspect resources within your application process and
populate any kind of documents.

The most obvious approach is to create some HTML templates, fill them with
data retrieved from describe() method of each resource and serve them
directly to the user via HTTP.

Graceful can’t do all of that out of the box (maybe in future) but general
process is very simple and does not require a lot of code. Additionally, you
have full control over what tools you want to use to build documentation.

In this section we will show how it could be done using some popular tools like
Jinja [http://jinja.pocoo.org] and
python-hoedown [https://github.com/hhatto/python-hoedown] but no one forces
you to use specific template language or text markup. Choose anything you like
and anything you are comfortable with. All code that is featured in this guide
is also available in the demo [https://github.com/swistakm/graceful/tree/master/demo]
directory in the project repository.

Serving HTML and using Jinja templates in falcon

Graceful isn’t a full-flegded framework like Django or Flask. It is only
a toolkit that allows you to define REST APIs in a clean and convenient way.
Only that and nothing more.

Neither Graceful nor Falcon have built-in support for generating HTML responses
because it is not their main use case. But serving HTML isn’t by any means
different from responding with JSON, XML, YAML, or any other content type.
What you need to do is to put your HTML to the body section of your response
and set proper value of the Content-Type header. Here is simple example
of falcon resource that serves some html:

import falcon

class HtmlResource:
 def on_get(self, req, resp):
 resp.body = """
 <!DOCTYPE html>
 <html>
 <head><title>Hello World!</title></head>
 <body>
 <h1>Hello World!</h1>
 </body>
 </html>
 """
 resp.status = falcon.HTTP_200
 resp.content_type = 'text/html'

Of cource no one wants to generate documentation relying solely on
str.format(). One useful feature that many web frameworks offer is some
kind of templating engine that allows you to easily format different kinds of
documents. If you want to build beautiful documentation you will eventually
need a one. For the purpose of this example we will use Jinja that is usually
a very good choice and is very easy to start with.

In our documentation pages, we don’t want to support any query string
parameters or define CRUD semenatics. So we don’t need any of Graceful’s
generic classes, parameters of serializers. Let’s build simple falcon resource
that will allow us to respond with templated HTML response that may be
populated with some predefined (or dynamic) context:

from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

class Templated(object):
 template_name = None

 def __init__(self, template_name=None, context=None):
 # note: this is to ensure that template_name can be set as
 # class level attribute in derrived class
 self.template_name = template_name or self.template_name
 self.context = context or {}

 def render(self, req, resp):
 template = env.get_template(self.template_name)
 return template.render(**self.context)

 def on_get(self, req, resp):
 resp.body = self.render(req, resp)
 resp.content_type = 'text/html'

Assuming we have index.html Jinja template stored in the templates
directory we can start to serve your first HTML from falcon by adding
Templated resource instance to your app router:

api.add_route("/", Templated('index.html'))

Populating templates with resources metadata

Once you are able to generate HTML pages from template it’s time to populate
them with resource metadata. Every resource class instance in Graceful provides
describe() method that returns dictionary that contains metadata with
information about it’s resource structure (fields), accepted HTTP methods,
query string parameters, and so on. The general structure is as follows:

{
 "details": ... # => Resource class docstring
 "fields": { # => Description of resource representation fields
 "<field_name>": {
 "details": ..., # => Field definition 'details' string
 "label": ..., # => Field definition 'label' string
 "spec": ..., # => Additional specification tuple associated
 # with specific field class. It is usualy
 # standard name (e.g. ISO 639-2), and URL to its
 # official documentation
 "type": ..., # => Generic type name like 'string', 'bool', etc.
 },
 ...
 },
 "methods": [...], # => List of accepted HTTP methods (uppercase)
 "name": "CatList", # => Resource class name
 "params": { # => Description of accepted query string params
 "<param_name>": {
 "default": ..., # => Default parameter value
 "details": ..., # => Param definition 'details' string
 "label": ...,
 "required": ..., # => Flag indicating if parameter is requires (bool)
 "spec": ..., # => Additional specification tuple associated
 # with specific param class. It is usualy
 # standard name (e.g. ISO 639-2), and URL to its
 # official documentation
 "type": "..." # => Generic type name like 'string', 'bool', etc.
 },
 },
 "path": ..., # => URI leading to resource (only available
 # on OPTIONS requests)
 "type": ..., # => General type of resource representation form.
 # It may be "object" for single resource
 # representation or "list" for endpoints that
 # return list of resource representations.
}

Knowing that resource descriptions have well defined and consistent structure
we can add them to predefined context of our Templated resource. Because
all API resources are always associated with their URIs (which are unique
per resource class), it is a good approach to group descriptions by their
URI templates from falcon router.

Let’s assume we want to document Cats API example presented in
main documentation page. Here is falcon’s router
configuration that adds Cats API resources and additional templated
documentation resource that can render our service metadata in human readable
form:

api.add_route("/v1/cats/{cat_id}", V1.Cat())
api.add_route("/v1/cats/", V1.CatList())
api.add_route("/", Templated('index.html', {
 'endpoints': {
 "/v1/cats/": V1.CatList().describe(),
 "/v1/cats/{cat_id}": V1.Cat().describe(),
 }
}))

For APIs that contain a lot of multiple resources it is always better to follow
“don’t repeat yourself” principle:

api = application = falcon.API()

endpoints = {
 "/v1/cats/{cat_id}": V1.Cat(),
 "/v1/cats/": V1.CatList(),
}

for uri, endpoint in endpoints:
 api.add_route(uri, endpoint)

api.add_route("/", Templated('index.html', {
 'endpoints': {
 uri: endpoint.describe()
 for uri, endpoint
 in endpoints.items()
 }
}))

The last thing you need to do is to create a template that will be used to
render your documentation. Here is a minimal Jinja template for Cats API that
provides general overview on the API structure with plain HTML and without any
fancy styling:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Cats API</title>
</head>
<body>

<h1>Cats API documentation</h1>

<p> Welcome to Cats API documentation </p>

{% for uri, endpoint in endpoints.items() %}
 <h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

 <p>
 Accepted methods:
 <code>{{ endpoint.methods }}</code>
 </p>

 <p> {{ endpoint.details }}</p>

 <h3>Accepted params</h3>
 {% if endpoint.params %}

 {% for name, param in endpoint.params.items() %}
 {{ name }} ({{ param.type }}): {{ param.details }}
 {% endfor %}

 {% endif %}

 <h3>Accepted fields</h3>
 {% if endpoint.fields %}

 {% for name, field in endpoint.fields.items() %}
 {{ name }} ({{ field.type }}): {{ field.details }}
 {% endfor %}

 {% endif %}
{% endfor %}
</body>
</html>

Formatting resource class docstrings

Building good service documentation is not an easy task but Graceful tries to
make it at least a bit easier by providing you with some tools to introspect
your service. Thanks to this you can take resource metadata and convert it to
human readable form.

But your work does not end on providing the list of acceptable fields and
parameters. Very often you may need to provide some more information about
specific resource type like specific limits, usage example or rationale behind
your design decisions. The best place to do that is the resource docstring
that is always included in the result of describe() method call. This is
very convenient way of managing even large parts of your documentation.

But when docstrings get longer and longer it is good idea to add a bit more
structure to them instead of keeping them unformatted. A good idea is to use
some lightweight markup language that is easy-to-read in plain text (so it is
easy to edit by developer) but provides you with enough rendering capabilities
to make your documentation look good for actual API user. A very popular choice
for a lightweight markup is Markdown [https://en.wikipedia.org/wiki/Markdown].

It seems that everyone loves Markdown, but apparently there is no Markdown
parser (at least availaible in Python) that would not suck terribly in some of
its aspects. Anyway, Python binding to
hoedown [https://github.com/hoedown/hoedown] (that is fork of sundown, that
is fork of upskirt, that is now a libsoldout...) has acceptable quality and can
be successfully used for that purpose.

The best news is that it is insanely easy to integrate it with Jinja. The only
thing you need to do is to create new template filter that will allow you to
convert any string to HTML inside of you template. It could be something like
following:

import hoedown
from jinja2 import Environment, FileSystemLoader

environment allows us to load template files, 'templates' is a dir
where we want to store them
env = Environment(loader=FileSystemLoader('templates'))

md = hoedown.Markdown(
 CustomRenderer(),
 extensions=hoedown.EXT_FENCED_CODE | hoedown.EXT_HIGHLIGHT
)

def markdown_filter(data):
 return md.render(data)

env.filters['markdown'] = markdown_filter

With such definition you can use your new filter anywhere in template
where you expect string to be multiline Markdown markup:

{% for uri, endpoint in endpoints.items() %}
 <h2>{{ endpoint.name }}: <code>{{ uri }}</code></h2>

 <p> {{ endpoint.details|markdown }}</p>
{% endfor %}

You can also use that technique to format multiline strings supplied
as details arguments to fields and parameters definitions. Graceful
will properly strip excesive leading whitespaces from them so you can
easily use any indentation-sensitive markup language (like reStructuredText).

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

API reference

	graceful package
	graceful.fields module

	graceful.parameters module

	graceful.serializers module

	graceful.authentication module

	graceful.authorization module

	graceful.validators module

	graceful.errors module

	graceful.resources package
	graceful.resources.base module

	graceful.resources.generic module

	graceful.resources.mixins module

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	graceful 0.6.0 documentation »

 	API reference »

graceful package

graceful.fields module

	
class graceful.fields.BaseField(details, label=None, source=None, validators=None, many=False, read_only=False, write_only=False, allow_null=False)

	Base field class for subclassing.

To create new field type subclass BaseField and implement following
methods:

	from_representation(): converts representation (used in
request/response body) to internal value.

	to_representation(): converts internal value to representation
that will be used in response body.

	Parameters:	
	details (str) – human readable description of field (it will be used
for describing resource on OPTIONS requests).

	label (str) – human readable label of a field (it will be used for
describing resource on OPTIONS requests).

Note: it is recommended to use field names that are
self-explanatory intead of relying on field labels.

	source (str) – name of internal object key/attribute that will be
passed to field on .to_representation() call. Special '*'
value is allowed that will pass whole object to field when making
representation. If not set then default source will
be a field name used as a serializer’s attribute.

	validators (list) – list of validator callables.

	many (bool) – set to True if field is in fact a list of given type
objects.

	read_only (bool) – True if field is read-only and cannot be set/modified
via POST, PUT, or PATCH requests.

	write_only (bool) – True if field is write-only and cannot be retrieved
via GET requests.

	allow_null (bool) – True if field can have intentional null values
which will be interpreted as None afterwards.

New in version 0.5.0.

Example:

class BoolField(BaseField):
 def from_representation(self, data):
 if data in {'true', 'True', 'yes', '1', 'Y'}:
 return True:
 elif data in {'false', 'False', 'no', '0', 'N'}:
 return False:
 else:
 raise ValueError(
 "{data} is not valid boolean field".format(
 data=data
)
)

 def to_representation(self, value):
 return ["True", "False"][value]

	
describe(**kwargs)

	Describe this field instance for purpose of self-documentation.

	Parameters:	kwargs (dict) – dictionary of additional description items for
extending default description

	Returns:	dict – dictionary of description items

Suggested way for overriding description fields or extending it with
additional items is calling super class method with new/overriden
fields passed as keyword arguments like following:

class DummyField(BaseField):
 def description(self, **kwargs):
 super().describe(is_dummy=True, **kwargs)

	
from_representation(data)

	Convert representation value to internal value.

Note

This is method handler stub and should be redifined in the
BaseField subclasses.

	
spec = None

	

	
to_representation(value)

	Convert representation value to internal value.

Note

This is method handler stub and should be redifined in the
BaseField subclasses.

	
type = None

	

	
validate(value)

	Perform validation on value by running all field validators.

Single validator is a callable that accepts one positional argument
and raises ValidationError when validation fails.

Error message included in exception will be included in http error
response

	Parameters:	value – internal value to validate

	Returns:	None

Note

Concept of validation for fields is understood here as a process
of checking if data of valid type (successfully parsed/processed by
.from_representation handler) does meet some other constraints
(lenght, bounds, uniqueness, etc). So this method is always called
with result of .from_representation() passed as its argument.

	
class graceful.fields.BoolField(details, representations=None, **kwargs)

	Represents boolean type of field.

By default accepts a wide range of incoming True/False representations:

	False: ['False', 'false', 'FALSE', 'F', 'f', '0', 0, 0.0, False]

	True: ['True', 'true', 'TRUE', 'T', 't', '1', 1, True]

By default, the outup representations of internal object’s value are
Python’s False/True values that will be later serialized to form that
is native for content-type of use.

This behavior can be changed using representations field argument.
Note that when using representations parameter you need to make
strict decision and there is no ability to accept multiple options for
true/false representations. Anyway, it is reccomended approach to
strictly define these values.

	Parameters:	representations (tuple) – two-tuple with representations for
(False, True) values, that will be used instead of default values

	
from_representation(data)

	Convert representation value to bool if it has expected form.

	
to_representation(value)

	Convert internal boolean value to one of defined representations.

	
type = 'bool'

	

	
class graceful.fields.FloatField(details, max_value=None, min_value=None, **kwargs)

	Represents float type of field.

Accepts both floats and strings as an incoming float number
representation and always returns float as a representation of internal
objects’s value that will be later serialized to form that is native for
content-type of use.

This field accepts optional arguments that simply add new max and min
value validation.

	Parameters:	
	max_value (int) – optional max value for validation

	min_value (int) – optional min value for validation

	
from_representation(data)

	Convert representation value to float.

	
to_representation(value)

	Convert internal value to float.

	
type = 'float'

	

	
class graceful.fields.IntField(details, max_value=None, min_value=None, **kwargs)

	Represents integer type of field.

Field of this type accepts both integers and strings as an incoming
integer representation and always returns int as a representation of
internal objects’s value that will be later serialized to form that is
native for content-type of use.

This field accepts optional arguments that simply add new max and min
value validation.

	Parameters:	
	max_value (int) – optional max value for validation

	min_value (int) – optional min value for validation

	
from_representation(data)

	Convert representation value to int.

	
to_representation(value)

	Convert internal value to int.

	
type = 'int'

	

	
class graceful.fields.RawField(details, label=None, source=None, validators=None, many=False, read_only=False, write_only=False, allow_null=False)

	Represents raw field subtype.

Any value from resource object will be returned as is without any
conversion and no control over serialized value type is provided. Can be
used only with very simple data types like int, float, str etc. but can
eventually cause problems if value provided in representation has type
that is not accepted in application.

Effect of using this can differ between various content-types.

	
from_representation(data)

	Return representation value as-is (note: content-type dependent).

	
to_representation(value)

	Return internal value as-is (note: content-type dependent).

	
type = 'raw'

	

	
class graceful.fields.StringField(details, label=None, source=None, validators=None, many=False, read_only=False, write_only=False, allow_null=False)

	Represents string field subtype without any extensive validation.

	
from_representation(data)

	Convert representation value to str.

	
to_representation(value)

	Convert representation value to str.

	
type = 'string'

	

graceful.parameters module

	
class graceful.parameters.Base64EncodedParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes string parameter with value encoded using Base64 encoding.

	
spec = ('RFC-4648 Section 4', 'https://tools.ietf.org/html/rfc4648#section-4')

	

	
value(raw_value)

	Decode param with Base64.

	
class graceful.parameters.BaseParam(details, label=None, required=False, default=None, many=False, validators=None)

	Base parameter class for subclassing.

To create new parameter type subclass BaseParam and implement
.value() method handler.

	Parameters:	
	details (str) – verbose description of parameter. Should contain all
information that may be important to your API user and will be used
for describing resource on OPTIONS requests and .describe()
call.

	label (str) – human readable label for this parameter (it will be used
for describing resource on OPTIONS requests).

Note that it is recomended to use parameter names that are
self-explanatory intead of relying on param labels.

	required (bool) – if set to True then all GET, POST, PUT,
PATCH and DELETE requests will return 400 Bad Request response
if query param is not provided. Defaults to False.

	default (str) – set default value for param if it is not
provided in request as query parameter. This MUST be a raw string
value that will be then parsed by .value() handler.

If default is set and required is True it will raise
ValueError as having required parameters with default
value has no sense.

	many (str) – set to True if multiple occurences of this parameter
can be included in query string, as a result values for this
parameter will be always included as a list in params dict.
Defaults to False. Instead of list you can use any
list-compatible data type by overriding the container class
attribute. See: Custom containers.

New in version 0.1.0.

	validators (list) – list of validator callables.

New in version 0.2.0.

Note

If many=False and client inlcudes multiple values for this
parameter in query string then only one of those values will be
returned, and it is undefined which one.

Example:

class BoolParam(BaseParam):
 def value(self, data):
 if data in {'true', 'True', 'yes', '1', 'Y'}:
 return True
 elif data in {'false', 'False', 'no', '0', 'N'}:
 return False
 else:
 raise ValueError(
 "{data} is not valid boolean field".format(
 data=data
)
)

	
container

	alias of list

	
describe(**kwargs)

	Describe this parameter instance for purpose of self-documentation.

	Parameters:	kwargs (dict) – dictionary of additional description items for
extending default description

	Returns:	dict – dictionary of description items

Suggested way for overriding description fields or extending it with
additional items is calling super class method with new/overriden
fields passed as keyword arguments like following:

class DummyParam(BaseParam):
 def description(self, **kwargs):
 super().describe(is_dummy=True, **kwargs)

	
spec = None

	

	
type = None

	

	
validated_value(raw_value)

	Return parsed parameter value and run validation handlers.

Error message included in exception will be included in http error
response

	Parameters:	value – raw parameter value to parse validate

	Returns:	None

Note

Concept of validation for params is understood here as a process
of checking if data of valid type (successfully parsed/processed by
.value() handler) does meet some other constraints
(lenght, bounds, uniqueness, etc.). It will internally call its
value() handler.

	
value(raw_value)

	Raw value deserialization method handler.

	Parameters:	raw_value (str) – raw value from GET parameters

	
class graceful.parameters.BoolParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes parameter with value expressed as bool.

New in version 0.2.0.

Accepted string values for boolean parameters are as follows:

	False: ['True', 'true', 'TRUE', 'T', 't', '1'}

	True: ['False', 'false', 'FALSE', 'F', 'f', '0', '0.0']

In case raw parameter value does not match any of these strings the
value() method will raise ValueError method.

	
type = 'bool'

	

	
value(raw_value)

	Decode param as bool value.

	
class graceful.parameters.DecimalParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes parameter with value expressed as decimal number.

	
type = 'decimal'

	

	
value(raw_value)

	Decode param as decimal value.

	
class graceful.parameters.FloatParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes parameter with value expressed as float number.

	
type = 'float'

	

	
value(raw_value)

	Decode param as float value.

	
class graceful.parameters.IntParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes parameter with value expressed as integer number.

	
type = 'integer'

	

	
value(raw_value)

	Decode param as integer value.

	
class graceful.parameters.StringParam(details, label=None, required=False, default=None, many=False, validators=None)

	Describes parameter that will always be returned as-is (string).

Additional validation can be added to param instance using validators
argument during initialization:

from graceful.parameters import StringParam
from graceful.validators import match_validator
from graceful.resources.generic import Resource

class ExampleResource(Resource):
 word = StringParam(
 'one "word" parameter',
 validators=[match_validator('\w+')],
)

	
type = 'string'

	

	
value(raw_value)

	Return param value as-is (str).

graceful.serializers module

	
class graceful.serializers.BaseSerializer

	Base serializer class for describing internal object serialization.

Example:

from graceful.serializers import BaseSerializer
from graceful.fields import RawField, IntField, FloatField

class CatSerializer(BaseSerializer):
 species = RawField("non normalized cat species")
 age = IntField("cat age in years")
 height = FloatField("cat height in cm")

	
describe()

	Describe all serialized fields.

It returns dictionary of all fields description defined for this
serializer using their own describe() methods with respect to order
in which they are defined as class attributes.

	Returns:	OrderedDict – serializer description

	
fields

	Return dictionary of field definition objects of this serializer.

	
from_representation(representation)

	Convert given representation dict into internal object.

Internal object is simply a dictionary of values with respect to field
sources.

This does not check if all required fields exist or values are
valid in terms of value validation
(see: BaseField.validate()) but still requires all of passed
representation values to be well formed representation (success call
to field.from_representation).

In case of malformed representation it will run additional validation
only to provide a full detailed exception about all that might be
wrong with provided representation.

	Parameters:	representation (dict) – dictionary with field representation values

	Raises:	DeserializationError – when at least one representation field
is not formed as expected by field object. Information
about additional forbidden/missing/invalid fields is provided
as well.

	
get_attribute(obj, attr)

	Get attribute of given object instance.

Reason for existence of this method is the fact that ‘attribute’ can
be also object’s key from if is a dict or any other kind of mapping.

Note: it will return None if attribute key does not exist

	Parameters:	obj (object) – internal object to retrieve data from

	Returns:	internal object’s key value or attribute

	
set_attribute(obj, attr, value)

	Set value of attribute in given object instance.

Reason for existence of this method is the fact that ‘attribute’ can
be also a object’s key if it is a dict or any other kind of mapping.

	Parameters:	
	obj (object) – object instance to modify

	attr (str) – attribute (or key) to change

	value – value to set

	
to_representation(obj)

	Convert given internal object instance into representation dict.

Representation dict may be later serialized to the content-type
of choice in the resource HTTP method handler.

This loops over all fields and retrieves source keys/attributes as
field values with respect to optional field sources and converts each
one using field.to_representation() method.

	Parameters:	obj (object) – internal object that needs to be represented

	Returns:	dict – representation dictionary

	
validate(object_dict, partial=False)

	Validate given internal object returned by to_representation().

Internal object is validated against missing/forbidden/invalid fields
values using fields definitions defined in serializer.

	Parameters:	
	object_dict (dict) – internal object dictionart to perform
to validate

	partial (bool) – if set to True then incomplete object_dict
is accepter and will not raise any exceptions when one
of fields is missing

	Raises:	DeserializationError

	
class graceful.serializers.MetaSerializer

	Metaclass for handling serialization with field objects.

	
static __new__(mcs, name, bases, namespace)

	Create new class object instance and alter its namespace.

	
classmethod __prepare__(mcs, name, bases, **kwargs)

	Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict so _get_fields() method can
construct fields storage that preserves the same order of fields as
defined in code.

Note: this is python3 thing and support for ordering of params in
descriptions will not be backported to python2 even if this framework
will get python2 support.

graceful.authentication module

	
class graceful.authentication.Anonymous(user)

	Dummy authentication middleware that authenticates every request.

It makes every every request authenticated with default value of
anonymous user. This authentication middleware may be used in order
to simplify custom authorization code since it will ensure that
every request context will have the 'user' variable defined.

Note

This middleware will always add the default user to the request
context if no other previous authentication middleware resolved.
So if this middleware is used it makes no sense to:

	Use the authentication_required decorator.

	Define any other authentication middleware after this one.

	Parameters:	user – Default anonymous user object.

New in version 0.4.0.

	
challenge = None

	

	
identify(req, resp, resource, uri_kwargs)

	Identify user with a dummy sentinel value.

	
only_with_storage = True

	

	
class graceful.authentication.BaseAuthenticationMiddleware(user_storage=None, name=None)

	Base class for all authentication middleware classes.

	Parameters:	
	user_storage (BaseUserStorage) – a storage object used to retrieve
user object using their identifier lookup.

	name (str) – custom name of the authentication middleware useful
for handling custom user storage backends. Defaults to middleware
class name.

New in version 0.4.0.

	
challenge = None

	

	
identify(req, resp, resource, uri_kwargs)

	Identify the user that made the request.

	Parameters:	
	req (falcon.Request) – request object

	resp (falcon.Response) – response object

	resource (object) – resource object matched by falcon router

	uri_kwargs (dict) – additional keyword argument from uri template.
For falcon<1.0.0 this is always None

	Returns:	object – a user object (preferably a dictionary).

	
only_with_storage = False

	

	
process_resource(req, resp, resource, uri_kwargs=None)

	Process resource after routing to it.

This is basic falcon middleware handler.

	Parameters:	
	req (falcon.Request) – request object

	resp (falcon.Response) – response object

	resource (object) – resource object matched by falcon router

	uri_kwargs (dict) – additional keyword argument from uri template.
For falcon<1.0.0 this is always None

	
try_storage(identifier, req, resp, resource, uri_kwargs)

	Try to find user in configured user storage object.

	Parameters:	identifier – User identifier.

	Returns:	user object.

	
class graceful.authentication.BaseUserStorage

	Base user storage class that defines required API for user storages.

All built-in graceful authentication middleware classes expect user storage
to have compatible API. Custom authentication middlewares do not need
to use storages.

New in version 0.4.0.

	
classmethod __subclasshook__(klass)

	Verify implicit class interface.

	
get_user(identified_with, identifier, req, resp, resource, uri_kwargs)

	Get user from the storage.

	Parameters:	
	identified_with (str) – instance of the authentication middleware
that provided the identifier value.

	identifier (str) – string that identifies the user (it is specific
for every authentication middleware implementation).

	req (falcon.Request) – the request object.

	resp (falcon.Response) – the response object.

	resource (object) – the resource object.

	uri_kwargs (dict) – keyword arguments from the URI template.

	Returns:	the deserialized user object. Preferably a dict but it is
application-specific.

	
class graceful.authentication.Basic(user_storage=None, name=None, realm='api')

	Authenticate user with Basic auth as specified by RFC 7617 [https://tools.ietf.org/html/rfc7616].

Token authentication takes form of Authorization header in the
following form:

Authorization: Basic <credentials>

Whre <credentials> is base64 encoded username and password separated by
single colon charactes (refer to official RFC). Usernames must not contain
colon characters!

If client fails to authenticate on protected endpoint the response will
include following challenge:

WWW-Authenticate: Basic realm="<realm>"

Where <realm> is the value of configured authentication realm.

This middleware must be configured with user_storage that provides
access to database of client API keys and their identities. Additionally.
the identifier received by user storage in the get_user() method
is a decoded <username>:<password> string. If you need to apply any
hash function before hitting database in your user storage handler, you
should split it using followitg code:

username, _, password = identifier.partition(":")

	Parameters:	
	realm (str) – name of the protected realm. This can be only alphanumeric
string with spaces (see: the REALM_RE pattern).

	user_storage (BaseUserStorage) – a storage object used to retrieve
user object using their identifier lookup.

	name (str) – custom name of the authentication middleware useful
for handling custom user storage backends. Defaults to middleware
class name.

New in version 0.4.0.

	
REALM_RE = re.compile('^[\\w]+$')

	

	
identify(req, resp, resource, uri_kwargs)

	Identify user using Authenticate header with Basic auth.

	
only_with_storage = True

	

	
class graceful.authentication.DummyUserStorage(user=None)

	A dummy storage that never returns users or returns specified default.

This storage is part of Anonymous authentication middleware.
It may also be useful for testing purposes or to disable specific
authentication middlewares through app configuration.

	Parameters:	
	user – User object to return. Defaults to None (will never

	authenticate).

New in version 0.4.0.

	
get_user(identified_with, identifier, req, resp, resource, uri_kwargs)

	Return default user object.

	
class graceful.authentication.IPRangeWhitelistStorage(ip_range, user)

	Simple storage dedicated for XForwardedFor authentication.

This storage expects that authentication middleware return client address
from its identify() method. For example usage see XForwardedFor.
Because it is IP range whitelist this storage it cannot distinguish
different users’ IP and always returns default user object. If you want to
identify different users by their IP see KeyValueUserStorage.

	Parameters:	
	ip_range – Any object that supports in operator (i.e. implements the
__cointains__ method). The __contains__ method should
return True if identifier falls into specified whitelist.
Tip: use iptools.

	user – Default user object to return on successful authentication.

New in version 0.4.0.

	
get_user(identified_with, identifier, req, resp, resource, uri_kwargs)

	Return default user object.

Note

This implementation expects that identifier is an user address.

	
class graceful.authentication.KeyValueUserStorage(kv_store, key_prefix='users', serialization=None)

	Basic user storage using any key-value store as authentication backend.

Client identities are stored as string under keys matching following
template:

<key_prefix>:<identified_with>:<identifier>

Where:

	<key_prefix> is the configured key prefix (same as the initialization
argument),

	<identified_with> is the name of authentication middleware that
provided user identifier,

	<identifier> is the identifier object that identifies the user.

Note that this key scheme will work only for middlewares that return
identifiers as single string objects. Also the <identifier> part
of key template is a plain text value of without any hashing algorithm
applied. It may not be secure enough to store user secrets that way.

If you want to use this storage with middleware that uses more complex
identifier format/objects (e.g. the Basic class) you will have
to register own identifier format in the hash_identifier method.
For details see the hash_identifier method docstring or the
practical example section of the
documentation.

	Parameters:	
	kv_store – Key-value store client instance (e.g. Redis client object).
The kv_store must provide at least two methods: get(key)
and set(key, value). The arguments and return values of these
methods must be strings.

	key_prefix – key prefix used to store client identities.

	serialization – serialization object/module that uses the
dumps()/loads() protocol. Defaults to json.

New in version 0.4.0.

	
get_user(identified_with, identifier, req, resp, resource, uri_kwargs)

	Get user object for given identifier.

	Parameters:	
	identified_with (object) – authentication middleware used
to identify the user.

	identifier – middleware specifix user identifier (string or tuple
in case of all built in authentication middleware classes).

	Returns:	dict – user object stored in Redis if it exists, otherwise None

	
static hash_identifier(identified_with, identifier)

	Create hash from identifier to be used as a part of user lookup.

This method is a singledispatch function. It allows to register
new implementations for specific authentication middleware classes:

from hashlib import sha1

from graceful.authentication import KeyValueUserStorage, Basic

@KeyValueUserStorage.hash_identifier.register(Basic)
def _(identified_with, identifier):
 return ":".join((
 identifier[0],
 sha1(identifier[1].encode()).hexdigest(),
))

	Parameters:	
	identified_with (str) – name of the authentication middleware used
to identify the user.

	identifier (str) – user identifier string

	Returns:	str – hashed identifier string

	
register(identified_with, identifier, user)

	Register new key for given client identifier.

This is only a helper method that allows to register new
user objects for client identities (keys, tokens, addresses etc.).

	Parameters:	
	identified_with (object) – authentication middleware used
to identify the user.

	identifier (str) – user identifier.

	user (str) – user object to be stored in the backend.

	
class graceful.authentication.Token(user_storage=None, name=None)

	Authenticate user using Token authentication.

Token authentication takes form of Authorization header:

Authorization: Token <token_value>

Where <token_value> is a secret string known to both client and server.
Example of valid header:

Authorization: Token 6fa459ea-ee8a-3ca4-894e-db77e160355e

If client fails to authenticate on protected endpoint the response will
include following challenge:

WWW-Authenticate: Token

This middleware must be configured with user_storage that provides
access to database of client tokens and their identities.

New in version 0.4.0.

	
challenge = 'Token'

	

	
identify(req, resp, resource, uri_kwargs)

	Identify user using Authenticate header with Token auth.

	
only_with_storage = True

	

	
class graceful.authentication.XAPIKey(user_storage=None, name=None)

	Authenticate user with X-Api-Key header.

The X-Api-Key authentication takes a form of X-Api-Key header in the
following form:

X-Api-Key: <key_value>

Where <key_value> is a secret string known to both client and server.
Example of valid header:

X-Api-Key: 6fa459ea-ee8a-3ca4-894e-db77e160355e

If client fails to authenticate on protected endpoint the response will
include following challenge:

WWW-Authenticate: X-Api-Key

Note

This method functionally equivalent to Token and is included
only to ease migration of old applications that could use such
authentication method in past. If you’re building new API and require
only simple token-based authentication you should prefere
Token middleware.

This middleware must be configured with user_storage that provides
access to database of client API keys and their identities.

New in version 0.4.0.

	
challenge = 'X-Api-Key'

	

	
identify(req, resp, resource, uri_kwargs)

	Initialize X-Api-Key authentication middleware.

	
only_with_storage = True

	

	
class graceful.authentication.XForwardedFor(user_storage=None, name=None, remote_address_fallback=False)

	Authenticate user with X-Forwarded-For header or remote address.

	Parameters:	remote_address_fallback (bool) – Use fallback to REMOTE_ADDR value
from WSGI environment dictionary if X-Forwarded-For header is
not available. Defaults to False.

This authentication middleware is usually used with the
IPRangeWhitelistStorage e.g:

from iptools import IPRangeList
import falcon

from graceful import authentication

IP_WHITELIST = IpRangeList(
 '127.0.0.1',
 # ...
)

auth_middleware = authentication.XForwardedFor(
 user_storage=authentication.IPWRangehitelistStorage(
 IP_WHITELIST, user={"username": "internal"}
)
)

api = application = falcon.API(middleware=[auth_middleware])

Note

Using this middleware class is highly unrecommended if you
are not able to ensure that contents of X-Forwarded-For header
can be trusted. This requires proper reverse proxy and network
configuration. It is also recommended to at least use the static
IPRangeWhitelistStorage as the user storage.

New in version 0.4.0.

	
challenge = None

	

	
identify(req, resp, resource, uri_kwargs)

	Identify client using his address.

	
only_with_storage = False

	

graceful.authorization module

	
graceful.authorization.authentication_required(req, resp, resource, uri_kwargs)

	Ensure that user is authenticated otherwise return 401 Unauthorized.

If request fails to authenticate this authorization hook will also
include list of WWW-Athenticate challenges.

	Parameters:	
	req (falcon.Request) – the request object.

	resp (falcon.Response) – the response object.

	resource (object) – the resource object.

	uri_kwargs (dict) – keyword arguments from the URI template.

New in version 0.4.0.

graceful.validators module

	
graceful.validators.min_validator(min_value)

	Return validator function that ensures lower bound of a number.

Result validation function will validate the internal value of resource
instance field with the value >= min_value check

	Parameters:	min_value – minimal value for new validator

	
graceful.validators.max_validator(max_value)

	Return validator function that ensures upper bound of a number.

Result validation function will validate the internal value of resource
instance field with the value >= min_value check.

	Parameters:	max_value – maximum value for new validator

	
graceful.validators.choices_validator(choices)

	Return validator function that will check if value in choices.

	Parameters:	max_value (list, set, tuple) – allowed choices for new validator

	
graceful.validators.match_validator(expression)

	Return validator function that will check if matches given expression.

	Parameters:	match – if string then this will be converted to regular expression
using re.compile. Can be also any object that has match()
method like already compiled regular regular expression or custom
matching object/class.

graceful.errors module

	
exception graceful.errors.DeserializationError(missing=None, forbidden=None, invalid=None, failed=None)

	Raised when error happened during deserialization of representation.

	
as_bad_request()

	Translate this error to falcon’s HTTP specific error exception.

	
exception graceful.errors.ValidationError

	Raised when validation error occured.

	
as_bad_request()

	Translate this error to falcon’s HTTP specific error exception.

Note

Exceptions returned by this method should be used to inform about
resource validation failures. In case of param validation
failures the as_invalid_param() method should be used.

	
as_invalid_param(param_name)

	Translate this error to falcon’s HTTP specific error exception.

Note

Exceptions returned by this method should be used to inform about
param validation failures. In case of resource validation
failures the as_bad_request() method should be used.

	Parameters:	param_name (str) – HTTP query string parameter name

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	graceful 0.6.0 documentation »

 	API reference »

graceful.resources package

graceful.resources.base module

	
class graceful.resources.base.BaseResource

	Base resouce class with core param and response functionality.

This base class handles resource responses, parameter deserialization,
and validation of request included representations if serializer is
defined.

All custom resource classes based on BaseResource accept additional
with_context keyword argument:

class MyResource(BaseResource, with_context=True):
 ...

The with_context argument tells if resource modification methods
(metods injected with mixins - list/create/update/etc.) should accept
the context argument in their signatures. For more details
see Dealing with falcon context objects section of documentation. The
default value for with_context class keyword argument is False.

Changed in version 0.3.0: Added the with_context keyword argument.

	
static __new__(*args, **kwargs)

	Do some sanity checks before resource instance initialization.

	
allowed_methods()

	Return list of allowed HTTP methods on this resource.

This is only for purpose of making resource description.

	Returns:	list – list of allowed HTTP method names (uppercase)

	
describe(req=None, resp=None, **kwargs)

	Describe API resource using resource introspection.

Additional description on derrived resource class can be added using
keyword arguments and calling super().decribe() method call
like following:

class SomeResource(BaseResource):
 def describe(req, resp, **kwargs):
 return super().describe(
 req, resp, type='list', **kwargs
)

	Parameters:	
	req (falcon.Request) – request object

	resp (falcon.Response) – response object

	kwargs (dict) – dictionary of values created from resource url
template

	Returns:	dict – dictionary with resource descritpion information

Changed in version 0.2.0: The req and resp parameters became optional to ease the
implementation of application-level documentation generators.

	
make_body(resp, params, meta, content)

	Construct response body in resp object using JSON serialization.

	Parameters:	
	resp (falcon.Response) – response object where to include
serialized body

	params (dict) – dictionary of parsed parameters

	meta (dict) – dictionary of metadata to be included in ‘meta’
section of response

	content (dict) – dictionary of response content (resource
representation) to be included in ‘content’ section of response

	Returns:	None

	
on_options(req, resp, **kwargs)

	Respond with JSON formatted resource description on OPTIONS request.

	Parameters:	
	req (falcon.Request) – Optional request object. Defaults to None.

	resp (falcon.Response) – Optional response object. Defaults to None.

	kwargs (dict) – Dictionary of values created by falcon from
resource uri template.

	Returns:	None

Changed in version 0.2.0: Default OPTIONS responses include Allow header with list of
allowed HTTP methods.

	
params

	Return dictionary of parameter definition objects.

	
require_meta_and_content(content_handler, params, **kwargs)

	Require ‘meta’ and ‘content’ dictionaries using proper hander.

	Parameters:	
	content_handler (callable) – function that accepts
params, meta, **kwargs argument and returns dictionary
for content response section

	params (dict) – dictionary of parsed resource parameters

	kwargs (dict) – dictionary of values created from resource url
template

	Returns:	tuple (meta, content) –

	two-tuple with dictionaries of meta and

	content response sections

	
require_params(req)

	Require all defined parameters from request query string.

Raises falcon.errors.HTTPMissingParam exception if any of required
parameters is missing and falcon.errors.HTTPInvalidParam if any
of parameters could not be understood (wrong format).

	Parameters:	req (falcon.Request) – request object

	
require_representation(req)

	Require raw representation dictionary from falcon request object.

This does not perform any field parsing or validation but only uses
allowed content-encoding handler to decode content body.

Note

Currently only JSON is allowed as content type.

	Parameters:	req (falcon.Request) – request object

	Returns:	dict – raw dictionary of representation supplied in request body

	
require_validated(req, partial=False, bulk=False)

	Require fully validated internal object dictionary.

Internal object dictionary creation is based on content-decoded
representation retrieved from request body. Internal object validation
is performed using resource serializer.

	Parameters:	
	req (falcon.Request) – request object

	partial (bool) – set to True if partially complete representation
is accepted (e.g. for patching instead of full update). Missing
fields in representation will be skiped.

	bulk (bool) – set to True if request payload represents multiple
resources instead of single one.

	Returns:	dict –

	dictionary of fields and values representing internal object.

	Each value is a result of field.from_representation call.

	
serializer = None

	

	
class graceful.resources.base.MetaResource(name, bases, namespace, **kwargs)

	Metaclass for handling parametrization with parameter objects.

	
static __new__(mcs, name, bases, namespace, **kwargs)

	Create new class object instance and alter its namespace.

	
classmethod __prepare__(mcs, name, bases, **kwargs)

	Prepare class namespace in a way that ensures order of attributes.

This needs to be an OrderedDict instance so _get_params()
method can construct params storage that preserves the same order of
parameters as defined in code.

	Parameters:	
	bases – all base classes of created resource class

	namespace (dict) – namespace as dictionary of attributes

graceful.resources.generic module

	
class graceful.resources.generic.ListAPI

	Generic List API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	
describe(req=None, resp=None, **kwargs)

	Extend default endpoint description with serializer description.

	
on_get(req, resp, **kwargs)

	Respond on GET requests using self.list() handler.

	
class graceful.resources.generic.ListCreateAPI

	Generic List/Create API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	POST: create new resource from representation provided in request body
(handled with .create() method handler)

	PATCH: create multiple resources from list of representations provided
in request body (handled with .create_bulk() method handler.

	
create_bulk(params, meta, **kwargs)

	Create items in bulk by reusing existing .create() handler.

Note

This is default create_bulk implementation that may not be safe
to use in production environment depending on your implementation
of .create() method handler.

	
on_patch(req, resp, **kwargs)

	Respond on PATCH requests using self.create_bulk() handler.

	
on_post(req, resp, **kwargs)

	Respond on POST requests using self.create() handler.

	
class graceful.resources.generic.ListResource

	Basic retrieval of resource instance lists without serialization.

This resource class is intended for endpoints that do not require automatic
representation serialization and extensive field descriptions but still
gives support for defining parameters as resource class attributes.

Example usage:

	
class graceful.resources.generic.PaginatedListAPI

	Generic List API with resource serialization and pagination.

Generic resource that uses serializer for resource description,
serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	
class graceful.resources.generic.PaginatedListCreateAPI

	Generic List/Create API with resource serialization and pagination.

Generic resource that uses serializer for resource description,
serialization and validation.

Adds simple pagination to list of resources.

Allowed methods:

	GET: list multiple resource instances representations (handled
with .list() method handler)

	POST: create new resource from representation provided in request body
(handled with .create() method handler)

	
class graceful.resources.generic.Resource

	Basic retrieval of resource instance lists without serialization.

This resource class is intended for endpoints that do not require automatic
representation serialization and extensive field descriptions but still
gives support for defining parameters as resource class attributes.

Example usage:

	
class graceful.resources.generic.RetrieveAPI

	Generic Retrieve API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation (handled with .retrieve()
method handler)

	
describe(req=None, resp=None, **kwargs)

	Extend default endpoint description with serializer description.

	
on_get(req, resp, **kwargs)

	Respond on GET requests using self.retrieve() handler.

	
serializer = None

	

	
class graceful.resources.generic.RetrieveUpdateAPI

	Generic Retrieve/Update API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation handled with .retrieve()
method handler

	PUT: update resource with representation provided in request body
(handled with .update() method handler)

	
on_put(req, resp, **kwargs)

	Respond on PUT requests using self.update() handler.

	
class graceful.resources.generic.RetrieveUpdateDeleteAPI

	Generic Retrieve/Update/Delete API with resource serialization.

Generic resource that uses serializer for resource description,
serialization and validation.

Allowed methods:

	GET: retrieve resource representation (handled with .retrieve()
method handler)

	PUT: update resource with representation provided in request body
(handled with .update() method handler)

	DELETE: delete resource (handled with .delete() method handler)

graceful.resources.mixins module

	
class graceful.resources.mixins.BaseMixin

	Base mixin class.

	
handle(handler, req, resp, **kwargs)

	Handle given resource manipulation flow in consistent manner.

This mixin is intended to be used only as a base class in new flow
mixin classes. It ensures that regardless of resource manunipulation
semantics (retrieve, get, delete etc.) the flow is always the same:

	Decode and validate all request parameters from the query string
using self.require_params() method.

	Use self.require_meta_and_content() method to construct meta
and content dictionaries that will be later used to create
serialized response body.

	Construct serialized response body using self.body() method.

	Parameters:	
	handler (method) – resource manipulation method handler.

	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified.

	**kwargs – additional keyword arguments retrieved from url
template.

	Returns:	Content dictionary (preferably resource representation).

	
class graceful.resources.mixins.CreateBulkMixin

	Add default “bulk creation flow on PATCH” to any resource class.

	
create_bulk(params, meta, **kwargs)

	Create multiple resource instances and return their representation.

This is default multiple resource instances creation method. Value
returned is the representation of multiple resource instances. It will
be included in the ‘content’ section of response body.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict) – dictionary of values retrieved from the route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
on_patch(req, resp, handler=None, **kwargs)

	Respond on POST HTTP request assuming resource creation flow.

This request handler assumes that POST requests are associated with
resource creation. Thus default flow for such requests is:

	Create new resource instances and prepare their representation by
calling its bulk creation method handler.

	Set response status code to 201 Created.

Note: this handler does not set Location header by default as
it would be valid only for single resource creation.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – creation method handler to be called. Defaults
to self.create.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.CreateMixin

	Add default “creation flow on POST” to any resource class.

	
create(params, meta, **kwargs)

	Create new resource instance and return its representation.

This is default resource instance creation method. Value returned
is the representation of single resource instance. It will be included
in the ‘content’ section of response body.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	kwargs (dict) – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
get_object_location(obj)

	Return location URI associated with given resource representation.

This handler is optional. Returned URI will be included as the
value of Location header on POST responses.

	
on_post(req, resp, handler=None, **kwargs)

	Respond on POST HTTP request assuming resource creation flow.

This request handler assumes that POST requests are associated with
resource creation. Thus default flow for such requests is:

	Create new resource instance and prepare its representation by
calling its creation method handler.

	Try to retrieve URI of newly created object using
self.get_object_location(). If it succeeds use that URI as the
value of Location header in response object instance.

	Set response status code to 201 Created.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – creation method handler to be called. Defaults
to self.create.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.DeleteMixin

	Add default “delete flow on DELETE” to any resource class.

	
delete(params, meta, **kwargs)

	Delete existing resource instance.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
on_delete(req, resp, handler=None, **kwargs)

	Respond on DELETE HTTP request assuming resource deletion flow.

This request handler assumes that DELETE requests are associated with
resource deletion. Thus default flow for such requests is:

	Delete existing resource instance.

	Set response status code to 202 Accepted.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – deletion method handler to be called. Defaults
to self.delete.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.ListMixin

	Add default “list flow on GET” to any resource class.

	
list(params, meta, **kwargs)

	List existing resource instances and return their representations.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
on_get(req, resp, handler=None, **kwargs)

	Respond on GET HTTP request assuming resource list retrieval flow.

This request handler assumes that GET requests are associated with
resource list retrieval. Thus default flow for such requests is:

	Retrieve list of existing resource instances and prepare their
representations by calling list retrieval method handler.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – list method handler to be called. Defaults
to self.list.

	**kwargs – additional keyword arguments retrieved from url template.

	
class graceful.resources.mixins.PaginatedMixin

	Add simple pagination capabilities to resource.

This class provides two additional parameters with some default
descriptions and add_pagination_meta method that can update
meta with more useful pagination information.

Example usage:

from graceful.resources.mixins import PaginatedMixin
from graceful.resources.generic import ListResource

class SomeResource(PaginatedMixin, ListResource):

 def list(self, params, meta):
 # params has now 'page' and 'page_size' params that
 # can be used for offset&limit-like operations
 self.add_pagination_meta(params, meta)

 # ...

	
add_pagination_meta(params, meta)

	Extend default meta dictionary value with pagination hints.

Note

This method handler attaches values to meta dictionary without
changing it’s reference. This means that you should never replace
meta dictionary with any other dict instance but simply modify
its content.

	Parameters:	
	params (dict) – dictionary of decoded parameter values

	meta (dict) – dictionary of meta values attached to response

	
class graceful.resources.mixins.RetrieveMixin

	Add default “retrieve flow on GET” to any resource class.

	
on_get(req, resp, handler=None, **kwargs)

	Respond on GET HTTP request assuming resource retrieval flow.

This request handler assumes that GET requests are associated with
single resource instance retrieval. Thus default flow for such requests
is:

	Retrieve single resource instance of prepare its representation by
calling retrieve method handler.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – list method handler to be called. Defaults
to self.list.

	**kwargs – additional keyword arguments retrieved from url template.

	
retrieve(params, meta, **kwargs)

	Retrieve existing resource instance and return its representation.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

	
class graceful.resources.mixins.UpdateMixin

	Add default “update flow on PUT” to any resource class.

	
on_put(req, resp, handler=None, **kwargs)

	Respond on PUT HTTP request assuming resource update flow.

This request handler assumes that PUT requests are associated with
resource update/modification. Thus default flow for such requests is:

	Modify existing resource instance and prepare its representation by
calling its update method handler.

	Set response status code to 202 Accepted.

	Parameters:	
	req (falcon.Request) – request object instance.

	resp (falcon.Response) – response object instance to be modified

	handler (method) – update method handler to be called. Defaults
to self.update.

	**kwargs – additional keyword arguments retrieved from url template.

	
update(params, meta, **kwargs)

	Update existing resource instance and return its representation.

Value returned by this handler will be included in response
‘content’ section.

	Parameters:	
	params (dict) – dictionary of parsed parameters accordingly
to definitions provided as resource class atributes.

	meta (dict) – dictionary of meta parameters anything added
to this dict will will be later included in response
‘meta’ section. This can already prepopulated by method
that calls this handler.

	**kwargs – dictionary of values retrieved from route url
template by falcon. This is suggested way for providing
resource identifiers.

	Returns:	value to be included in response ‘content’ section

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	graceful 0.6.0 documentation »

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graceful	

 	
 	
 graceful.authentication	

 	
 	
 graceful.authorization	

 	
 	
 graceful.errors	

 	
 	
 graceful.fields	

 	
 	
 graceful.parameters	

 	
 	
 graceful.resources.base	

 	
 	
 graceful.resources.generic	

 	
 	
 graceful.resources.mixins	

 	
 	
 graceful.serializers	

 	
 	
 graceful.validators	

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	graceful 0.6.0 documentation »

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

_

 	

 	__new__() (graceful.resources.base.BaseResource static method)

 	

 	(graceful.resources.base.MetaResource static method)

 	(graceful.serializers.MetaSerializer static method)

 	

 	__prepare__() (graceful.resources.base.MetaResource class method)

 	

 	(graceful.serializers.MetaSerializer class method)

 	__subclasshook__() (graceful.authentication.BaseUserStorage class method)

A

 	

 	add_pagination_meta() (graceful.resources.mixins.PaginatedMixin method)

 	allowed_methods() (graceful.resources.base.BaseResource method)

 	Anonymous (class in graceful.authentication)

 	

 	as_bad_request() (graceful.errors.DeserializationError method)

 	

 	(graceful.errors.ValidationError method)

 	as_invalid_param() (graceful.errors.ValidationError method)

 	authentication_required() (in module graceful.authorization)

B

 	

 	Base64EncodedParam (class in graceful.parameters)

 	BaseAuthenticationMiddleware (class in graceful.authentication)

 	BaseField (class in graceful.fields)

 	BaseMixin (class in graceful.resources.mixins)

 	BaseParam (class in graceful.parameters)

 	

 	BaseResource (class in graceful.resources.base)

 	BaseSerializer (class in graceful.serializers)

 	BaseUserStorage (class in graceful.authentication)

 	Basic (class in graceful.authentication)

 	BoolField (class in graceful.fields)

 	BoolParam (class in graceful.parameters)

C

 	

 	challenge (graceful.authentication.Anonymous attribute)

 	

 	(graceful.authentication.BaseAuthenticationMiddleware attribute)

 	(graceful.authentication.Token attribute)

 	(graceful.authentication.XAPIKey attribute)

 	(graceful.authentication.XForwardedFor attribute)

 	choices_validator() (in module graceful.validators)

 	

 	container (graceful.parameters.BaseParam attribute)

 	create() (graceful.resources.mixins.CreateMixin method)

 	create_bulk() (graceful.resources.generic.ListCreateAPI method)

 	

 	(graceful.resources.mixins.CreateBulkMixin method)

 	CreateBulkMixin (class in graceful.resources.mixins)

 	CreateMixin (class in graceful.resources.mixins)

D

 	

 	DecimalParam (class in graceful.parameters)

 	delete() (graceful.resources.mixins.DeleteMixin method)

 	DeleteMixin (class in graceful.resources.mixins)

 	describe() (graceful.fields.BaseField method)

 	

 	(graceful.parameters.BaseParam method)

 	(graceful.resources.base.BaseResource method)

 	(graceful.resources.generic.ListAPI method)

 	(graceful.resources.generic.RetrieveAPI method)

 	(graceful.serializers.BaseSerializer method)

 	

 	DeserializationError

 	DummyUserStorage (class in graceful.authentication)

F

 	

 	fields (graceful.serializers.BaseSerializer attribute)

 	FloatField (class in graceful.fields)

 	FloatParam (class in graceful.parameters)

 	from_representation() (graceful.fields.BaseField method)

 	

 	(graceful.fields.BoolField method)

 	(graceful.fields.FloatField method)

 	(graceful.fields.IntField method)

 	(graceful.fields.RawField method)

 	(graceful.fields.StringField method)

 	(graceful.serializers.BaseSerializer method)

G

 	

 	get_attribute() (graceful.serializers.BaseSerializer method)

 	get_object_location() (graceful.resources.mixins.CreateMixin method)

 	get_user() (graceful.authentication.BaseUserStorage method)

 	

 	(graceful.authentication.DummyUserStorage method)

 	(graceful.authentication.IPRangeWhitelistStorage method)

 	(graceful.authentication.KeyValueUserStorage method)

 	graceful.authentication (module)

 	graceful.authorization (module)

 	

 	graceful.errors (module)

 	graceful.fields (module)

 	graceful.parameters (module)

 	graceful.resources.base (module)

 	graceful.resources.generic (module)

 	graceful.resources.mixins (module)

 	graceful.serializers (module)

 	graceful.validators (module)

H

 	

 	handle() (graceful.resources.mixins.BaseMixin method)

 	

 	hash_identifier() (graceful.authentication.KeyValueUserStorage static method)

I

 	

 	identify() (graceful.authentication.Anonymous method)

 	

 	(graceful.authentication.BaseAuthenticationMiddleware method)

 	(graceful.authentication.Basic method)

 	(graceful.authentication.Token method)

 	(graceful.authentication.XAPIKey method)

 	(graceful.authentication.XForwardedFor method)

 	

 	IntField (class in graceful.fields)

 	IntParam (class in graceful.parameters)

 	IPRangeWhitelistStorage (class in graceful.authentication)

K

 	

 	KeyValueUserStorage (class in graceful.authentication)

L

 	

 	list() (graceful.resources.mixins.ListMixin method)

 	ListAPI (class in graceful.resources.generic)

 	

 	ListCreateAPI (class in graceful.resources.generic)

 	ListMixin (class in graceful.resources.mixins)

 	ListResource (class in graceful.resources.generic)

M

 	

 	make_body() (graceful.resources.base.BaseResource method)

 	match_validator() (in module graceful.validators)

 	max_validator() (in module graceful.validators)

 	

 	MetaResource (class in graceful.resources.base)

 	MetaSerializer (class in graceful.serializers)

 	min_validator() (in module graceful.validators)

O

 	

 	on_delete() (graceful.resources.mixins.DeleteMixin method)

 	on_get() (graceful.resources.generic.ListAPI method)

 	

 	(graceful.resources.generic.RetrieveAPI method)

 	(graceful.resources.mixins.ListMixin method)

 	(graceful.resources.mixins.RetrieveMixin method)

 	on_options() (graceful.resources.base.BaseResource method)

 	on_patch() (graceful.resources.generic.ListCreateAPI method)

 	

 	(graceful.resources.mixins.CreateBulkMixin method)

 	on_post() (graceful.resources.generic.ListCreateAPI method)

 	

 	(graceful.resources.mixins.CreateMixin method)

 	

 	on_put() (graceful.resources.generic.RetrieveUpdateAPI method)

 	

 	(graceful.resources.mixins.UpdateMixin method)

 	only_with_storage (graceful.authentication.Anonymous attribute)

 	

 	(graceful.authentication.BaseAuthenticationMiddleware attribute)

 	(graceful.authentication.Basic attribute)

 	(graceful.authentication.Token attribute)

 	(graceful.authentication.XAPIKey attribute)

 	(graceful.authentication.XForwardedFor attribute)

P

 	

 	PaginatedListAPI (class in graceful.resources.generic)

 	PaginatedListCreateAPI (class in graceful.resources.generic)

 	

 	PaginatedMixin (class in graceful.resources.mixins)

 	params (graceful.resources.base.BaseResource attribute)

 	process_resource() (graceful.authentication.BaseAuthenticationMiddleware method)

R

 	

 	RawField (class in graceful.fields)

 	REALM_RE (graceful.authentication.Basic attribute)

 	register() (graceful.authentication.KeyValueUserStorage method)

 	require_meta_and_content() (graceful.resources.base.BaseResource method)

 	require_params() (graceful.resources.base.BaseResource method)

 	require_representation() (graceful.resources.base.BaseResource method)

 	

 	require_validated() (graceful.resources.base.BaseResource method)

 	Resource (class in graceful.resources.generic)

 	retrieve() (graceful.resources.mixins.RetrieveMixin method)

 	RetrieveAPI (class in graceful.resources.generic)

 	RetrieveMixin (class in graceful.resources.mixins)

 	RetrieveUpdateAPI (class in graceful.resources.generic)

 	RetrieveUpdateDeleteAPI (class in graceful.resources.generic)

S

 	

 	serializer (graceful.resources.base.BaseResource attribute)

 	

 	(graceful.resources.generic.RetrieveAPI attribute)

 	set_attribute() (graceful.serializers.BaseSerializer method)

 	spec (graceful.fields.BaseField attribute)

 	

 	(graceful.parameters.Base64EncodedParam attribute)

 	(graceful.parameters.BaseParam attribute)

 	

 	StringField (class in graceful.fields)

 	StringParam (class in graceful.parameters)

T

 	

 	to_representation() (graceful.fields.BaseField method)

 	

 	(graceful.fields.BoolField method)

 	(graceful.fields.FloatField method)

 	(graceful.fields.IntField method)

 	(graceful.fields.RawField method)

 	(graceful.fields.StringField method)

 	(graceful.serializers.BaseSerializer method)

 	Token (class in graceful.authentication)

 	try_storage() (graceful.authentication.BaseAuthenticationMiddleware method)

 	type (graceful.fields.BaseField attribute)

 	

 	(graceful.fields.BoolField attribute)

 	(graceful.fields.FloatField attribute)

 	(graceful.fields.IntField attribute)

 	(graceful.fields.RawField attribute)

 	(graceful.fields.StringField attribute)

 	(graceful.parameters.BaseParam attribute)

 	(graceful.parameters.BoolParam attribute)

 	(graceful.parameters.DecimalParam attribute)

 	(graceful.parameters.FloatParam attribute)

 	(graceful.parameters.IntParam attribute)

 	(graceful.parameters.StringParam attribute)

U

 	

 	update() (graceful.resources.mixins.UpdateMixin method)

 	

 	UpdateMixin (class in graceful.resources.mixins)

V

 	

 	validate() (graceful.fields.BaseField method)

 	

 	(graceful.serializers.BaseSerializer method)

 	validated_value() (graceful.parameters.BaseParam method)

 	ValidationError

 	value() (graceful.parameters.Base64EncodedParam method)

 	

 	(graceful.parameters.BaseParam method)

 	(graceful.parameters.BoolParam method)

 	(graceful.parameters.DecimalParam method)

 	(graceful.parameters.FloatParam method)

 	(graceful.parameters.IntParam method)

 	(graceful.parameters.StringParam method)

X

 	

 	XAPIKey (class in graceful.authentication)

 	

 	XForwardedFor (class in graceful.authentication)

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	graceful 0.6.0 documentation »

 	Module code »

 Source code for builtins

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	graceful 0.6.0 documentation »

 All modules for which code is available

	builtins

	graceful.authentication

	graceful.authorization

	graceful.errors

	graceful.fields

	graceful.parameters

	graceful.resources.base

	graceful.resources.generic

	graceful.resources.mixins

	graceful.serializers

	graceful.validators

 © Copyright 2015, Michał Jaworski.
 Created using Sphinx 1.4.8.

 _static/up.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

